Skip to main content
Log in

The Effect of the Viscosity of a Trehalose Solution on ATP Hydrolysis by Chloroplast F1-ATPase

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of trehalose solution viscosity on the kinetics of ATP hydrolysis by CF1-ATPase (pea chloroplast F1-ATPase) was studied. Trehalose added to the reaction mixture had a double effect: the Mg-dependent enzyme activity was stimulated at trehalose levels below 20 wt % and suppressed at higher trehalose levels. The Ca-dependent activity of CF1 decreases monotonically with the increasing trehalose level. It was shown that stimulation of the Mg-dependent enzyme activity was a result of diminished Mg-ADP-dependent enzyme inactivation. In the case of negligible inactivation, the elevated trehalose content caused a decrease in the maximum rate of ATP hydrolysis and the apparent Michaelis constant increased. The changes in the values of the Michaelis constant and enzyme activity indicate that the delivery of reaction substrates and the conformational changes in CF1-ATPase accompanying the hydrolysis are impeded by the viscosity of the medium. In accordance with Cramer’s rule, the energy loss due to interaction with the medium leads to the conclusion that the efficiency of energy conversion by CF1-ATPase never reaches 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Nakanishi-Matsui, M. Sekiya, and M. Futai, Biochim. Biophys. Acta 1857 (2016) 129.

    Article  Google Scholar 

  2. A. Hahn, J. Vonck, D. J. Mills, et al., Science 360 (6389), eaat4318 (2018).

  3. J. P. Abrahams, A. G. W. Leslie, R. Lutter, and J. E. Walker, Nature 370, 621 (1994).

    Article  ADS  Google Scholar 

  4. P. D. Boyer, J. Biol. Chem. 277, 39045 (2002).

    Article  Google Scholar 

  5. A. N. Malyan and O. I. Vitseva, Biokhimiya 48, 718 (1983).

    Google Scholar 

  6. A. N. Malyan and W. S. Allison, Biochim. Biophys. Acta 1554, 153 (2002).

    Article  Google Scholar 

  7. A. N. Malyan, Biokhimiya 45, 1731 (1980).

    Google Scholar 

  8. U. Pick and S. Bassilian, Biochemistry 21, 6144 (1982).

    Article  Google Scholar 

  9. H. Noji, R. Yasuda, and K. Kinosita, Nature 386, 299 (1997).

    Article  ADS  Google Scholar 

  10. H. Itoh, A. Takahashi, K. Adachi, et al., Nature 427, 465 (2004).

    Article  ADS  Google Scholar 

  11. S. Toyabe, T. Watanabe-Nakayama, T. Okamoto, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 17951 (2011).

    Article  ADS  Google Scholar 

  12. N. Soga, K. Kimura, K. Kinosita, Jr., et al., Proc. Natl. Acad. Sci. U. S. A. 114 (19), 4960 (2017).

    Article  Google Scholar 

  13. J. L. Martin, R. Ishmukhametov, T. Hornung, et al., Proc. Nat. Acad. Sci. U. S. A. 111, 3715 (2014).

    Article  ADS  Google Scholar 

  14. B. Chapman and D. Loiselle, R. Soc. Open Sci. 3, 150379 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. O. Kulish, A. D.Wright, and E. M. Terentjev, Sci. Rep. 6, 28180 (2016).

    Article  ADS  Google Scholar 

  16. H. A. Kramers, Physica 7, 284 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. E. Sitnitsky, Biophys. Struct. Mech. 4, 37 (2010).

    Google Scholar 

  18. E. O. Puchkov, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol. 7, 270 (2013).

    Google Scholar 

  19. I. M. Kartashov, V. K. Opanasenko, and A. N. Malyan, Biophysics (Moscow) 60, 387 (2015).

    Article  Google Scholar 

  20. J. E. Lunn, I. Delorge, C. M. Figueroa, et al., Plant J. 79, 544 (2014).

    Article  Google Scholar 

  21. M. D. Mamedov, I. O. Petrova, D. V. Yanykin, et al., Biochemistry (Moscow) 80, 61 (2015).

    Article  Google Scholar 

  22. D. V Yanykin, A. A. Khorobrykh, M. D. Mamedov, and V. V. Klimov, J. Photochem. Photobiol. B: Biol. 164, 236 (2016). https://doi.org/10.1016/j.jphotobiol.2016.09.027

    Article  Google Scholar 

  23. A. Binder, A. Jagendorf, and E. Ngo, J. Biol. Chem. 253, 3094 (1978).

    Google Scholar 

  24. M. M. Bradford, Anal. Biochem. 72, 248 (1976).

    Article  Google Scholar 

  25. A. N. Malyan, Photosynthetica 15, 474 (1981).

    Google Scholar 

  26. W. C. Parker, N. Chakraborty, R. Vrikkis, et al., Optic Express 18, 16607 (2010).

    Article  ADS  Google Scholar 

  27. A. N. Malyan and A. D. Makarov, Biokhimiya 41, 1087 (1976).

    Google Scholar 

  28. A. N. Malyan, E. A. Akulova, E. N. Muzafarov, B-ioorg. Khim. 3, 639 (1977).

    Google Scholar 

  29. A. N. Malyan, Photosynth. Res. 128, 163 (2016).

    Article  Google Scholar 

  30. I. Yamato, Y. Kakinuma, and T. Murata, Biophys. Physicobiol. 13, 37 (2016).

    Article  Google Scholar 

  31. K. Asada, in Photosynhesis and the Environment, Ed. by N. R. Baker (Kluwer, Dordrecht, 2004), pp. 123–150.

    Google Scholar 

  32. F. Menke and G. Menke, Protoplasma 46, 536 (1956).

    Article  Google Scholar 

  33. J. T. O. Kirk, The Plastids. Their Chemistry, Structure, Growth and Inheritance (Freeman, San Francisco, 1967).

    Google Scholar 

  34. R. J. Ellis, Trends Biochem. Sci. 4, 241 (1979).

    Article  Google Scholar 

  35. R. O. Wayne, Plant Cell Biology: From Astronomy to Zoology (Elsevier, 2009).

    Google Scholar 

  36. A. S. Verkman, Trends Biochem. Sci. 27, 27 (2002).

    Article  Google Scholar 

  37. A. N. Malyan, Photosynthetica 56, 1365 (2018).

    Article  Google Scholar 

Download references

Funding

This work was conducted in the framework of the state order no. AAAA-A17-117030110135-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Malyan.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFICT OF INTEREST

The authors declare that they have no conflict of intere-st.

Additional information

Translated by E. V. Makeeva

Abbreviations: CF1, chloroplast coupling factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novichkova, N.S., Malyan, A.N. The Effect of the Viscosity of a Trehalose Solution on ATP Hydrolysis by Chloroplast F1-ATPase. BIOPHYSICS 64, 853–857 (2019). https://doi.org/10.1134/S0006350919060174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060174

Keywords:

Navigation