Skip to main content
Log in

Population Dynamics: Mathematical Modeling and Reality

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Application of mathematical modeling for analysis of natural phenomena relies on model reduction techniques, which inevitably raises the question of whether the results of simulation reflect real processes. This work analyzes problems that arise when the results obtained by mathematical modeling of population processes are compared to data collected by monitoring of natural ecosystems. The source of these problems is that the type of dependencies between variables that describe the population dynamics, as well as the choice of numerical values assigned to the parameters of the mathematical model, are often impossible to justify, even based on the monitoring data from a particular ecosystem. This paper proposes an approach to mathematical modeling that would take the impact of the entire complex of biotic and abiotic factors on the population dynamics into account. Its central feature is consideration of ecosystem monitoring data and incorporating them directly into mathematical models of population dynamics. This approach would make it possible, in particular, to evaluate the extent to which individual environmental factors influence both the variations in population abundance recorded during monitoring and those characteristics of population processes that are not directly measured during monitoring, but are obtained by mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. I. Valiela, Marine Ecological Processes (New York: Springer, 1995).

    Book  Google Scholar 

  2. G. Yu. Riznichenko and A. B. Rubin, Biophysical Dynamics of Production Processes (Inst. Comput. Res., Moscow–Izhevsk, 2004) [in Russian].

  3. V. D. Fedorov and T. G. Gil’manov, Ecology (Moscow State Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  4. A. B. Medvinsky, A. E. Bobyrev, V. A. Burmensky, et al., Russ. J. Num. Analysis Math. Model. 30, 55 (2015).

    Google Scholar 

  5. A. V. Rusakov, A. E. Bobyrev, V. A. Burmensky, et al., Komp’yut. Issled. Model. 8, 229 (2016).

    Google Scholar 

  6. G. G. Mittelbach, C. W. Osenberg, and M. A. Leibold, in Size-structured Populations, Ed. by B. Ebenman and L. Persson (Springer, Berlin, 1988), pp. 219–235.

    Google Scholar 

  7. M. Kot, Elements of Mathematical Ecology (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  8. O. J. Schmitz, Resolving Ecosystem Complexity (Princeton Univ. Press, Princeton, NJ, 2010).

    Book  Google Scholar 

  9. P. Turchin, Complex Population Dynamics. A Theoretical/Empirical Synthesis (Princeton Univ. Press, Princeton, NJ, 2003).

    MATH  Google Scholar 

  10. A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, et al., Biophysics (Moscow) 57 (1), 115 (2012).

    Article  Google Scholar 

  11. A. B. Medvinsky, B. V. Adamovich, R. R. Aliev, et al., Ecol. Complexity 23, 61 (2015).

    Article  Google Scholar 

  12. E. Beninca, et al., Proc. Natl. Acad. Sci. U. S. A. 112, 6389 (2015).

    Article  ADS  Google Scholar 

  13. A. Yu. Loskutov, Usp. Fiz. Nauk 180, 1305 (2010).

    Article  Google Scholar 

  14. J. Lighthill, Proc. Roy. Soc. Lond. A 407, 35 (1986).

    Article  ADS  Google Scholar 

  15. G. Boffetta, et al., Phys. Reports 356, 367 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. Kot M et al., Bull. Math. Biol. 54, 619 (1992).

    Article  Google Scholar 

  17. A. B. Medvinskii, S. V. Petrovsky, I. A. Tikhonova, et al., Usp. Fiz. Nauk 172, 31 (2002).

    Article  Google Scholar 

  18. A. B. Medvinsky, M. M. Gonik, F. S. Berezovskaya, et al., Biol. Invasions 7, 877 (2005).

    Article  Google Scholar 

  19. H. W. Ducklow, S. C. Doney, and D. K. Steinberg, Annu. Rev. Mar. Sci. 1, 279 (2009).

    Article  ADS  Google Scholar 

  20. M. Ushio, C. H. Hsieh, R. Masuda, et al., Nature 554 (7692), 360 (2018).

    Article  ADS  Google Scholar 

  21. N. Boccara, Modeling Complex Systems (Springer, New York, 2004).

    MATH  Google Scholar 

  22. G. Sugihara, R. May, H. Ye, et al., Science 338 (6106), 496 (2012).

    Article  ADS  Google Scholar 

  23. F. Takens, Dynam. Syst. Turbulence 898, 366 (1981).

    Google Scholar 

  24. G. I. Murphy and J. D. Isaacs, California Cooperative Oceanic Fisheries Investigations 7, 1 (1964).

    Google Scholar 

  25. R. Lasker and A. Mac Call, in Proc. Joint Oceanographic Assembly 1982 General Symposia (1983), p. 110.

  26. D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  27. E. Ott, Chaos in Dynamical Systems (Cambridge University, Cambridge, 2002).

    Book  MATH  Google Scholar 

  28. A. B. Medvinsky and A. V. Rusakov, Chaos Soliton. Fract. 44, 390 (2011).

    Article  ADS  Google Scholar 

  29. A. B. Medvinsky, A. V. Rusakov, and N. I. Nurieva, Ecol. Complexity 14, 108 (2013).

    Article  Google Scholar 

  30. A. S. Bratus’, A. S. Novozhilov, A. P. Platonov, Dynamical Systems and Models in Biology (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  31. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  32. S. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  33. R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems (Princeton Univ. Press, Princeton, NJ, 2006).

    Book  Google Scholar 

  34. H. Poincaré, Acta Math. 13, 1 (1890).

    MathSciNet  Google Scholar 

  35. N. Marwan, M. Carmen Romano, M. Thiel, and J. Kurths, Phys. Reports 438, 237 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  36. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).

    Book  MATH  Google Scholar 

  37. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  38. A. B. Medvinsky, B. V. Adaovich, R. R. Aliev, et al., Ecol. Complexity 32, 90 (2017).

    Article  Google Scholar 

  39. R. D. Gulati, Hydrobiologia 200–201, 99 (1990).

    Article  Google Scholar 

  40. R. Perissinotto, Marine Ecol. Progr. Series 79, 243 (1992).

    Article  ADS  Google Scholar 

  41. T. B. Gurung, M. Nakanishi, and J. Urabe, Limnol. Oceanogr. 45, 1689 (2000).

    Article  ADS  Google Scholar 

  42. J. Le, J. D. Wehr, and L. Campbell, Appl. Environ. Microbiol. 60, 2086 (1994).

    Article  Google Scholar 

  43. K. Vrede, T. Vrede, A. Isaksson, and A. Karlsson, Limnol. Oceanogr. 44, 1616 (1999).

    Article  ADS  Google Scholar 

  44. D. A. Tikhonov and A. B. Medvinsky, Biophysics (Moscow) 64 (4), 593 (2019).

    Article  Google Scholar 

  45. C. V. Heer, Statistical Mechanics, Kinetic Theory, and Stochastic Processes (Academic, New York, 1972).

    Google Scholar 

  46. J.-L. Shen, J. Hung, and L.-S. Lee, in Int. Conf. on Spoken Language Processing (1998), Paper 0232.

  47. X. Li, H. Liu, Y. Zheng, and B. Xu, in Bio-Inspired Computational Intelligence and Applications, Ed. by M. Fei, G. W. Irwin, and S. Ma (Springer, Berlin), pp. 36–45.

  48. W. Yi, Sh. Qui, H. Qi, et al., J. NeuroEng. Rehabil. 10, 106 (2013).

    Article  Google Scholar 

  49. V. Sharma and A. Parey, Procedia Eng. 144, 253 (2016).

    Article  Google Scholar 

  50. B. V. Adamovich, A. Medvinsky, L. Nikitina, et al., Ecol. Indicators 97, 120 (2019).

    Article  Google Scholar 

  51. V. A. Kostitzin, La Biologie Mathematique (A. Colin, Paris, 1937).

    MATH  Google Scholar 

  52. Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities (Nauka, Moscow, 1978).

    Google Scholar 

  53. A. A. Berryman, N. C. Stenseth, and A. S. Isaev, Oecologia 71, 174 (1987).

    Article  ADS  Google Scholar 

  54. A. S. Isaev, R. G. Khlebopros, L. V. Nedorezov, et al., Population Dynamics of Forest Insects (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  55. A. D. Bazykin, F. S. Berezovskaya, A. S. Isaev, et al., Dokl. Akad. Nauk 333, 673 (1993).

    Google Scholar 

  56. A. D. Bazykin, Nonlinear Dynamics of Interacting Populations (Inst. Comput. Res., Moscow—Izhevsk, 2001) [in Russian].

    Google Scholar 

  57. V. S. Anishchenko, A Primer in Nonlinear Dynamics (Moscow, 2008) [in Russian].

    Google Scholar 

  58. G. F. Gause, The Struggle for Existence (Williams and Wilkins, Baltimore, 1934).

    Book  MATH  Google Scholar 

  59. A. N. Kolmogorov, Probl. Kibernet. 25, 100 (1972).

    Google Scholar 

  60. Yu. V. Tyutyunov and L. I. Titova, Zh. Obshch. Biol. 79, 428 (2018).

    Google Scholar 

  61. M. W. Adamson and A. Y. Morozov, Proc. Roy. Soc. Lond. A 469, 2012.0500 (2013).

  62. V. S. Ivlev, Experimental Ecology of Fish Feeding (Pishchepromizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  63. W. C. Gentleman and A. B. Neuheimer, J. Plankton Res. 30, 1215 (2008).

    Article  Google Scholar 

  64. B. V. Adamovich, T. V. Zhukova, T. M. Mikheeva, et al., Vodn. Resursy 43, 535 (2016).

    Google Scholar 

  65. D. W. Schindler, Limnol. Oceanogr. 51, 356 (2006).

    Article  ADS  Google Scholar 

  66. R. G. Wetzel, Limnology: Lake and River Ecosystems (Academic, San Diego, 2001).

    Google Scholar 

  67. S. N. Wood and M. B. Thomas, Proc. Roy. Soc. Lond. B 266, 565 (1999).

    Article  Google Scholar 

  68. C. T. Perretti, S. B. Munch, and G. Sugihara, Proc. Natl. Acad. Sci. U. S. A. 110, 5253 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-07-00048); field research in the Naroch lake system was supported by the Foundation for Basic Research of the Republic of Belarus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvinsky.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain experiments performed using humans or animals as objects.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvinsky, A.B., Adamovich, B.V., Rusakov, A.V. et al. Population Dynamics: Mathematical Modeling and Reality. BIOPHYSICS 64, 956–977 (2019). https://doi.org/10.1134/S0006350919060150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060150

Keywords:

Navigation