Skip to main content
Log in

Chlorophyll Fluorescence of Summer Phytoplankton in Reservoirs of the Zvenigorod Biological Station of Moscow State University

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The results of long-term observations and monitoring of three reservoirs of Zvenigorod Biological Station of Moscow State University using modern chlorophyll fluorescence methods are presented. A sharp increase in chlorophyll content (up to 431 μg/L) and photosynthesis activity (FV/FM up to 0.7) associated with the growth of a monoculture, Chlorella vulgaris, was found in 2017 Pozharnyi Pond pond constructed near University dormitory facilities. The high activity of light reactions of this phytoplankton was evident as changes in the following parameters: the maximum quantum yield of primary photochemistry in photosystem II (FV/FM), the maximum relative electron transport rate (ETRmax), maximal light utilization coefficient (α), the efficiency of electron transport (φEo) and the performance index of photosystem II (PIABS) increased. This was accompanied by a decrease in the density of QB-non-reducing centers (VJ) and dissipated energy flux per reaction center (DI0/RC). The most sensitive parameters of fluorescence induction curve (PIABS and φEo) and the coefficient of maximal light utilization coefficient (α) are proposed to monitor the state of phytoplankton in reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton Univ. Press, Princeton, NJ, 2013).

    Book  Google Scholar 

  2. D. N. Matorin, V. A. Osipov, and A. B. Rubin, Procedure for Measuring the Abundance of Phytoplankton and Indicating Changes in Its State in Natural Waters by a Fluorescence Method: Theoretical and Practical Aspects (Al’treks, Moscow, 2012) [in Russian].

    Google Scholar 

  3. D. N. Matorin, T. K. Antal, M. Ostrowska, et al., Oceanologia 46 (4), 519 (2004).

    Google Scholar 

  4. M. Ostrowska, R. Majchrowski, D. N. Matorin, et al., Oceanologia 42 (2), 203 (2000).

    Google Scholar 

  5. D. N. Matorin and A. B. Rubin, Chlorophyll Fluorescence in Higher Plants and Algae (IKI-RKHD, Izhevsk, 2012) [in Russian].

    Google Scholar 

  6. T. K. Antal, P. S. Venediktov, D. N. Matorin, et al., Oceanologia 43 (3), 291 (2001).

    Google Scholar 

  7. V. V. Fadeev, E. M. Filippova, D. V. Maslov, et al., Proc. Soc. Photo-Opt. Instrum. 3821, 248 (1999).

    Google Scholar 

  8. U. Schreiber, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Ed. by G. Papageorgiou and Govindjee (Springer, Dordrecht, 2004), pp. 279–319.

  9. V. N. Gol’tsev, KH. M. Kaladzhi, M. A. Kuzmanova, and S. I. Allakhverdiev, Variable and Delayed Chlorophyll a Fluorescence: Theoretical Principles and Applications in Plant Research (IKI-RKHD, Izhevsk, 2014) [in Russian] .

    Google Scholar 

  10. R. J. Strasser, M. Tsimilli-Michael, S. Qiang, and V. Goltsev, Biochim. Biophys. Acta 1797 (6–7), 1313 (2010).

  11. D. Lazar and G. Schansker, in Photosynthesis in Silico, Ed. by A. Laisk, L. Nedbal and Govindjee (Springer, Dordrecht, 2009), pp. 85–123.

  12. O. Herlory, P. Richard, and G. F. Blanchard, Mar. Bio-l. 153, 91 (2007).

    Article  Google Scholar 

  13. P. J. Ralph and R. Gademann, Aquat. Bot. 82, 222 (2005).

    Article  Google Scholar 

  14. J. Serodio, S. Vieira, S. Cruz, and F. Barroso, Mar. Biol. 146, 903 (2005).

    Article  Google Scholar 

  15. N. S. Stroganov, N. S. Buzinova, Practical Manual in Hydrochemistry (Moscow State Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  16. N. Goto, H. Miyazaki, N. Nakamura, et al., Fundam. Appl. Limnol. 172 (2), 121 (2008).

    Article  Google Scholar 

  17. C. Kaiblinger and M. T. Dokulil, Photosynth. Res. 88 (1), 19 (2006).

    Article  Google Scholar 

  18. G. S. Karabashev, Fluorescence in the Ocean (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  19. Z. S. Kolber and P. G. Falkowski, Limnol. Oceanogr. 38, 1646 (1993).

    Article  ADS  Google Scholar 

  20. M. Ostrowska, Diss. Monogr. Inst. Oceanol. PAS 26 (3), 194 (2001).

  21. S. A. Mosharov, V. M. Sergeeva., A. F. Sazhin, et al., Estuar. Coast. Shelf. S 218, 59 (2019).

    Article  ADS  Google Scholar 

  22. I. V. Mosharova, V. V. Il’inskii, D. N. Matorin, et al., Microbiology (Moscow) 84 (6), 811 (2015).

    Article  Google Scholar 

  23. E. N. Voronova, L. V. Il’yash, S. I. Pogosyan, et al., Microbiology (Moscow) 78 (4), 419 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Matorin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Abbreviations: PS II, photosystem II; ZBS MSU, Zvenigorod Biological Station of Moscow State University; QA, QB, pri-mary and secondary quinone electron acceptors in photosystem II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matorin, D.N., Timofeev, N.P., Sindalovskaya, M.L. et al. Chlorophyll Fluorescence of Summer Phytoplankton in Reservoirs of the Zvenigorod Biological Station of Moscow State University. BIOPHYSICS 64, 858–865 (2019). https://doi.org/10.1134/S0006350919060149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060149

Keywords:

Navigation