Skip to main content
Log in

Virus Detection Methods and Biosensor Technologies

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper provides a brief overview of the modern and classical virus detection methods, including virus detection with bacteriophages as an example. Attention is given to the use of screening methods for virus detection in the analysis of large numbers of samples, which can help avoid serious costs in the detection of viruses. One of the fastest growing directions in microbiology is the development of biosensor methods for virus detection, including those based on electrophysical analysis methods. The interest in biosensor systems for virus detection in aqueous solutions is due to their simplicity, rapidity, cost-effectiveness, and relatively high sensitivity. The promise is shown of the use of electro-acoustic sensors in the development of biosensor methods for virus detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Carter and V. Saunders, Virology: principles and applications (Wiley, London, 2007).

    Google Scholar 

  2. A. Lesniewski, M. Los, M. Jonsson–Niedziólka, et al., Bioconjugate Chem. 25, 644 (2014).

    Article  Google Scholar 

  3. N. N. Nosik and V. M. Stakhanova, Klin. Mikrobiol. Antimikrob. Khimioterap. 2 (2), 70 (2000).

    Google Scholar 

  4. F. N. Dultsev, R. E. Speight, M. T. Fiorini, et al., Anal. Chem. 73 (16), 3935 (2001).

    Article  Google Scholar 

  5. K. P. O’Connell, J. R. Bucher, P. E. Anderson, et al., Appl. Environ. Microbiol. 72 (1), 478 (2006).

    Article  Google Scholar 

  6. J. H. Lee, D. W. Domaille, and J. N. Cha, ACS Nano. 6 (6), 5621 (2012).

    Article  Google Scholar 

  7. A. S. Labinskaya, Microbiology and Microbiological Research Techniques (Meditsina, Moscow, 1978) [in Russian].

    Google Scholar 

  8. V. V. Alekseev, Laboratory Technologies in Medicine. A Manual of Clinical Laboratory Diagnostics, Ed. by A. I. Karpishchenko (GEOTAR-Media, Moscow, 2013) [in Russian].

    Google Scholar 

  9. M. H. Adams, Bakterioohages (Interscience Publ., New York, 1959; Medgiz, Moscow, 1961).

  10. E. Katter, Bacteriophages: Biology and Practical Applications, ed. by E. Katter and A. M. Sulakvelidze (Nauchnyi Mir, Moscow, 2012) [in Russian].

    Google Scholar 

  11. M. H. V. van Regenmortel and B. W. J. Mahy Desk, Encyclopedia of General Virology (Academic, San Diego, 2010).

    Google Scholar 

  12. A. M. Kropinski and M. R. J. Clokie, Bacteriophages: Methods and Protocols, Ed. by M. R. J. Clokie and A. M. Kropinski (Humana Press LLC, New Jersey, 2009), Vol. 1.

    Google Scholar 

  13. H. W. Ackermann, Res. Microbiol. 154 (4), 245 (2003).

    Article  Google Scholar 

  14. K. E. Ashelford, M. J. Day, and J. C. Fry, Appl. Environ. Microbiol. 69, 285 (2003).

    Article  Google Scholar 

  15. A. K. Sirotkin, Candidate’s Dissertation in Biology (St. Petersburg, 2004).

  16. H.-W. Ackermann and M. Heldal, in Manual of Aquatic Viral Ecology, Ed. by S. W. Wilhelm, M. G. Weinbauer, and C. A. Suttle (ASLO, 2010), pp. 182–192.

    Google Scholar 

  17. I. V. Safenkova, A. V. ZHerdev and B. B. Dzantiev, Usp. Biol. Khim. 52, 281 (2012).

    Google Scholar 

  18. Yu. G. Kuznetsov, A. J. Malkin, R. W. Lucas, et al., J. Gen. Virol. 82 (9), 2025 (2001).

    Article  Google Scholar 

  19. A. N. Nikiyan and E. B. Tatlybaeva, Vestn. Orenburg. Gos. Univ. 6 (167), 112 (2014).

    Google Scholar 

  20. S. R. Nettikadan, J. C. Johnson, C. Mosher, and E. Henderson, Biochem. Biophys. Res. Commun. 311 (2), 540 (2003).

    Article  Google Scholar 

  21. C. Qi, Y. Lin, J. Feng, et al., Virus Res. 140 (1–2), 79 (2009).

  22. T. E. Ignatyuk, I. A. Golutvin, N. S. Nasikan, et al., Vopr. Virusol. 48 (6), 17 (2003).

    Google Scholar 

  23. M. M. Ferris, C. L. Stoffel, T. T. Maurer, and K. L. Rowlen, Anal. Biochem. 304 (2) 249 (2002).

    Article  Google Scholar 

  24. K. Wen, A. C. Ortmann, and C. A. Suttle, Appl. Environ. Microbiol. 70 (7), 3862 (2004).

    Article  Google Scholar 

  25. J. J. McSharry, Microbiol. Rev. 7 (4) 576 (1994).

    Article  Google Scholar 

  26. C. P. D. Brussaard, D. Marie, and G. Bratbak, J. Virol. Methods 85 (1–2), 175 (2000).

  27. C. Bergeron, J. Ordi, D. Schmidt, et al., Am. J. Clin. Pathol. 133 (3) 395 (2010).

    Article  Google Scholar 

  28. A. M. Egorov, A. P. Osipov, B. B. Dzantiev and E. M. Gavrilova, Immunoenzyme Assays: Theory and Practice (Vysshaya Shkola, Moscow, 1991).

  29. A. H. Coons, H. J. Creech, R. N. Jones, and E. Berliner, J. Immunol. 45, 159 (1942).

    Google Scholar 

  30. W. B. Cherry, in Manual of Clinical Microbiology, 3rd ed., Ed. by E. H. Lennette, A. Balows, W. J. Hausler, Jr., (Am. Soc. Microbiol., Washington, DC, 1980), pp. 501–508.

    Google Scholar 

  31. R. C. Wong and H. Y. Tse, Lateral Flow Immunoassay (Humana Press, New Jersey, 2009).

    Book  Google Scholar 

  32. R. H. Yolken, D. A. Lennette, T. F. Smith, and J. L. Waner, in Manual of Clinical Microbiology, 7th ed., Ed. by P. R. Murray, E. J. Baron and M. A. Pfaller (Am. Soc. Microbiol., Washington, DC, 1999), pp. 843–846.

    Google Scholar 

  33. O. S. Antonova, G. E. Rudnitskaya, A. N. Tupik, et al., Nauch. Priborostroenie 21 (4), 5 (2011).

    Google Scholar 

  34. A. P. F. Turner, I. Karube, and G.S. Wilson, Biosensors: Fundamentals and Applications (Oxford Univ. Press, 1990; Mir, Moscow, 1992), pp. 457–487.

  35. M. Los, J. Los, and G. Wegrzyn, Microb. Cell Factories 5, S38 (2006). https://doi.org/10.1186/1475-2859-5-S1-S38

    Article  Google Scholar 

  36. N. T. Darwish, S. D. Sekaran, Y. Alias, and S. M. Khor, J. Pharm. Biomed. Anal. 149, 591 (2018). https://doi.org/10.1016/j.jpba.2017.11.064

    Article  Google Scholar 

  37. A. M. Rossi, L. Wang, V. Reipa, and T. E. Murphy, Biosens. Bioelectron. 23 (5), 741 (2007).

    Article  Google Scholar 

  38. I. Grabowska, K. Malecka, U. Jarocka, et al., Acta Biochim. Pol. 61 (3), 471 (2014).

    Article  Google Scholar 

  39. A. Lesniewski, M. Los, M. Jonsson–Niedzioøka, et al., Bioconjugate Chem. 25, 644 (2014).

    Article  Google Scholar 

  40. X. Munoz-Berbel, C. Garcia–Aljaro, and F. J. Munoz, Electrochim. Acta 53, 5739 (2008).

    Article  Google Scholar 

  41. N. J. De Mol and M. J. E. Fischer, Surface Plasmon Resonance: Methods and Protocols (Humana Press, New York, 2010).

    Book  Google Scholar 

  42. C. Garcia-Aljaro, X. Munoz-Berbel, A. T. A. Jenkins, et al., Appl. Environ. Microbiol. 74 (13), 4054 (2008).

    Article  Google Scholar 

  43. E. Don, O. Farafonova, S. Pokhil, et al., Sensors 16 (1), 96 (2016). https://doi.org/10.3390/s16010096

    Article  Google Scholar 

  44. M. Pohanka, Int. J. Electrochem. Sci. 12, 496 (2017).

    Article  Google Scholar 

  45. E. Uttenthaler, M. Schraml, J. Mandel, and S. Drost, Biosens. Bioelectron. 16 (9–12),735 (2001).

  46. M. R. Gajendragad, K. N. Y. Kamath, P. Y. Anil, et al., Vet. Microbiol. 78, 319 (2001).

    Article  Google Scholar 

  47. S. Kurosawa, J. W. Park, H. Aizawa, et al., Biosens. Bioelectron. 22 (4).473 (2006).

  48. O. Tamarin, S. Comeau, C. Dejous, et al., Biosens. Bioelectron. 18 (5–6), 755 (2003).

  49. D. S. Ballantine, R. M. White, S. J. Martin, et al., Acoustic Wave Sensors: Theory, Design, and Pysico-chemical Applications (Academic, San Diego, 1997).

    Book  Google Scholar 

  50. B. Koenig and M. Graetzel, Anal. Chem. 66, 341 (1994).

    Article  Google Scholar 

  51. M. Bisoffi, B. Hjelle, D. C. Brown, et al., Biosens. Bioelectron. 23 (9), 1397 (2008).

    Article  Google Scholar 

  52. H. Muramatsu, E. Tamiya, M. Suzuki, and I. Karube, Anal. Chim. Acta 217, 321 (1989).

    Article  Google Scholar 

  53. J. T. Baca, V. Severns, D. Lovato, et al., J. Virol. 78, 4330 (2004).

    Article  Google Scholar 

  54. L. Zhou, M. Liu, L. Hu, et al., J. Pharm. Biomed. Anal. 27, 341 (2002).

    Article  Google Scholar 

  55. M. Bisoffi, J. Clin. Microbiol. 51 (6), 1685 (2013).

    Article  Google Scholar 

  56. B. D. Zaitsev, A. M. Shikhabudinov, A. A. Teplykh, and I. E. Kuznetsova, Ultrasonics 63, 179 (2015).

    Article  Google Scholar 

  57. B. D. Zaitsev, I. E. Kuznetsova, A. M. Shikhabudinov, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (5) 963(2012).

    Article  Google Scholar 

  58. O. I. Guliy, B. D. Zaitsev, I. E. Kuznetsova, et al., Biophysics (Moscow) 61 (1) 52 (2016).

    Article  Google Scholar 

  59. O. I. Guliy, B. D. Zaitsev, I. A. Borodina, et al., Biophysics (Moscow) 62 (3), 373 (2017).

    Article  Google Scholar 

  60. O. I. Guliy, B. D. Zaitsev, A. V. Smirnov, et al., Appl. Biochem. Microbiol. 53 (6), 725 (2017).

    Article  Google Scholar 

  61. O. I. Guliy, B. D. Zaitsev, I. A. Borodina, et al., Talanta 178, 743 (2018).

    Article  Google Scholar 

  62. B. D. Zaitsev, I. E. Kuznetsova, A. M. Shikhabudinov, and A. A. Vasil’ev, Pis’ma Zh. Tekh. Fiz. 37 (11), 27(2011).

    Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project nos. 19-07-00304 and 19-07-00300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Guliy.

Ethics declarations

In carrying out this work, all ethical standards were observed.

Conflict of Interest. The authors declare that they have no conflicts of interest.

Compliance with Standards of Research Involving Humans as Subjects. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Translated by A. Ostyak

Abbreviations: AFM, atomic force microscopy; PCR, polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliy, O.I., Zaitsev, B.D., Larionova, O.S. et al. Virus Detection Methods and Biosensor Technologies. BIOPHYSICS 64, 890–897 (2019). https://doi.org/10.1134/S0006350919060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060095

Keywords:

Navigation