Skip to main content
Log in

A 3-Day Functional Unloading is Accompanied by an Increase in the TTN Gene Expression in the Rat Soleus Muscle without Changes in Alternative Splicing from Exon 50 to Exon 111

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Changes in the expression of the titin gene and alternative splicing of titin pre-mRNA from exon 50 to exon 111 in rat soleus muscle were analyzed following 3-day functional unloading (the HS group). Using real-time RT-PCR, it was found that the expression level of the titin gene in the rat soleus muscle from the HS group was higher by 1.81 times (p ≤ 0.01, n = 6) than the control level (n = 7). It was shown that all studied exons of titin mRNA are present in rats soleus muscle from the two groups. Our results demonstrate that 3-day functional unloading is accompanied by an increase in the expression of the titin gene in rat soleus without changes in alternative splicing from exon 50 to exon 111.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. M. Mirzoev and B. S. Shenkman, Biochemistry (Moscow) 83 (11), 1299 (2018). https://doi.org/10.1134/S0006297918110020

    Article  Google Scholar 

  2. T. Toursel, L. Stevens, H. Granzier, and Y. Mounier, J. Appl. Physiol. 92 (4), 1465 (2002). https://doi.org/10.1152/japplphysiol.00621.2001

    Article  Google Scholar 

  3. B. S. Shenkman, T. L. Nemirovskaya, I. N. Belozerova, et al., J. Gravit. Physiol. 9 (1), P139 (2002).

    Google Scholar 

  4. J. Udaka, S. Ohmori, T. Terui, et al., J. Gen. Physiol. 131 (1), 33 (2008). https://doi.org/10.1085/jgp.200709888

    Article  Google Scholar 

  5. I. M. Vikhlyantsev and Z. A. Podlubnaya, Biophysics (Moscow) 53 (6), 592 (2008).

    Article  Google Scholar 

  6. A. Ulanova, Y. Gritsyna, I. Vikhlyantsev, et al., Biomed. Res. Int. 2015, 104735 (2015). https://doi.org/10.1155/2015/104735

    Article  Google Scholar 

  7. L. Tskhovrebova and J. Trinick, J. Mol. Biol. 265 (2), 100 (1997). https://doi.org/10.1006/jmbi.1996.0717

    Article  Google Scholar 

  8. D. O. Furst, M. Osborn, R. Nave, and K. Weber, J. Cell Biol. 106 (5), 563 (1988).

    Article  Google Scholar 

  9. A. Houmeida, J. Holt, L. Tskhovrebova, and J. Trinick, J. Cell Biol. 131 (6, Pt. 1), 1471 (1995).

    Article  Google Scholar 

  10. J. K. Freundt and W.A. Linke, J. Appl. Physiol. 126 (5), 1474 (2018). https://doi.org/10.1152/japplphysiol.00865.2018

    Article  Google Scholar 

  11. P. F. van der Ven, J. W. Bartsch, M. Gautel, et al., J. Cell Sci. 113 (Pt. 8), 1405 (2000).

    Google Scholar 

  12. R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, Nature 323 (6084), 160 (1986). https://doi.org/10.1038/323160a0

    Article  ADS  Google Scholar 

  13. H. L. Granzier and S. Labeit, Exerc. Sport Sci. Rev. 34 (2), 50 (2006).

    Article  Google Scholar 

  14. T. Voelkel and W. A. Linke, Pflugers Arch. 462 (1), 143 (2011). https://doi.org/10.1007/s00424-011-0938-1

    Article  Google Scholar 

  15. M. Gautel, Pflugers Arch. 462 (1), 119 (2011). https://doi.org/10.1007/s00424-011-0946-1

    Article  Google Scholar 

  16. B. S. Shenkman, Z. A. Podlubnaya, I. M. Vikhlyantsev, et al., Biophysics (Moscow) 49 (5), 807 (2004).

    Google Scholar 

  17. E. V. Ponomareva, V. V. Kravtsova, E. V. Kachaeva, et al., Biophysics (Moscow) 53 (6), 615 (2008). https://doi.org/10.1134/S0006350908060274

    Article  Google Scholar 

  18. M. L. Bang, T. Centner, F. Fornoff, et al., Circ. Res. 89 (11), 1065 (2001).

    Article  Google Scholar 

  19. W. Guo and M. Sun, Biophys. Rev. 10 (1), 15, (2018). https://doi.org/10.1007/s12551-017-0267-5

    Article  Google Scholar 

  20. Z. Chen, R. Maimaiti, C. Zhu, et al., J. Cell Biochem. 119 (12), 9986 (2018). https://doi.org/10.1002/jcb.27328

    Article  Google Scholar 

  21. S. Labeit, S. Lahmers, C. Burkart, et al., J. Mol. Biol. 362 (4), 664 (2006). https://doi.org/10.1016/j.jmb.2006.07.077

    Article  Google Scholar 

  22. A. Freiburg, K. Trombitas, W. Hell, et al., Circ. Res. 86 (11), 1114 (2000).

    Article  Google Scholar 

  23. W. Guo, S. J. Bharmal, K. Esbona, and M. L. Greaser, J. Biomed. Biotechnol. 2010, 753675 (2010). https://doi.org/10.1155/2010/753675

    Google Scholar 

  24. C. Neagoe, C. A. Opitz, I. Makarenko, and W. A. Linke, J. Muscle Res. Cell Motil. 24 (2–3), 175 (2003).

  25. J. M. Giger, P. W. Bodell, M. Zeng, et al., J. Appl. Physiol. 107 (4), 1204 (2009). https://doi.org/10.1152/japplphysiol.00344.2009

    Article  Google Scholar 

  26. N. A. Vilchinskaya, E. P. Mochalova, T. L. Ne-mirovskaya, et al., J. Physiol. 595 (23), 7123 (2017). https://doi.org/10.1113/JP275184

    Article  Google Scholar 

  27. V. E. Novikov and E. A. Ilyin, Aviat. Space Environ. Med. 52 (9), 551 (1981).

    Google Scholar 

  28. R. K. Globus and E. Morey-Holton, J. Appl. Physiol. 120 (10), 1196 (2016). https://doi.org/10.1152/japplphysiol.00997.2015

    Article  Google Scholar 

  29. G. J. Viljoen, L. H. Nel, and J. R. Crowther, Molecular Ddiagnostic PCR Handbook (Springer, The Netherlands, 2005).

    Google Scholar 

  30. K. J. Livak and T. D. Schmittgen, Methods 25, 402 (2001). https://doi.org/10.1006/meth.2001.1262

    Article  Google Scholar 

  31. S. Li, W. Guo, C. N. Dewey, and M. L. Greaser, Nucleic Acids Res. 41 (4), 2659 (2013). https://doi.org/10.1093/nar/gks1362

    Article  Google Scholar 

  32. D. L. Enns, T. Raastad, I. Ugelstad, and A. N. Belcastro, Eur. J. Appl. Physiol. 100 (4), 445 (2007). https://doi.org/10.1007/s00421-007-0445-4

    Article  Google Scholar 

  33. W. B. Isaacs, I. S. Kim, A. Struve, and A. B. Fulton, J. Cell Biol. 109 (5), 2189 (1989).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using equipment for collective use of the Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences and Institute of Biomedical Problems State Scientific Center of the Russian Academy of Sciences.

Funding

This study was financially supported by the Russian Science Foundation (grant no. 18-15-00062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Vikhlyantsev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments performed on animals was approved by the Commission on Biomedical Ethics of the Institute of Biomedical Problems State Scientific Center of the Russian Academy of Sciences.

Additional information

Translated by V. Mittova

Abbreviations: TTN, titin gene; MCH, myosin heavy chains; RT-PCR, reverse transcription polymerase chain reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulanova, A.D., Gritsyna, Y.V., Zhalimov, V.K. et al. A 3-Day Functional Unloading is Accompanied by an Increase in the TTN Gene Expression in the Rat Soleus Muscle without Changes in Alternative Splicing from Exon 50 to Exon 111. BIOPHYSICS 64, 683–689 (2019). https://doi.org/10.1134/S0006350919050245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919050245

Navigation