Skip to main content
Log in

The Relationship between Lipid Peroxidation and Microviscosity in Phosphatidylcholine Liposomes. The Effects of a Plant Antioxidant and a Protein

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The influence of lipid peroxidation on the structure of biomembranes and liposomes has been studied for many years; however, there are still a number of unexplained issues that require additional study. In particular, there are contradictions in the assessment of the state of the structure of deep-lying membrane lipids during the development of lipid peroxidation. In this work, we carried out targeted studies of changes in the microviscosity of a lipid component by the EPR method using a spin probe (16-doxyl-stearic acid) in the process of initiated lipid peroxidation in liposomes obtained from phosphatidylcholine and phosphatidylcholine with a plant antioxidant additive and encapsulation in a protein shell at two temperatures, physiological (37°C) and elevated (60°C). It has been found that the development of lipid peroxidation in all experiments is accompanied by an increase in the microviscosity of deep-lying layers of lipids, which is directly proportional to the degree of development of the lipid peroxidation. This effect is mainly due to an increase in the relative content of saturated fatty acids in lipids of liposomes, although new structural forms of the oxidized lipids may also make some contribution to it. Using dynamic light scattering and atomic force microscopy it has been shown that lipid peroxidation causes an increase in the average diameter and volume of individual liposomes and an increase in the absolute value of their negative zeta potential. A plant antioxidant and a protein inhibit this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Schnitzer, I. Pinchuk, and D. Lichtenberg, Eur. Biophys. J. 36, 499 (2007).

    Article  Google Scholar 

  2. A. Catala, Chem. Phys. Lipids 157, 1 (2009).

    Article  Google Scholar 

  3. D. J. McClements, Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds (CRC Press, New York, 2014).

    Book  Google Scholar 

  4. M. G. Semenova and E. Dickinson, Biopolymers in Food Colloids: Thermodynamics and Molecular Interactions (Brill, Leiden, 2010).

    Book  Google Scholar 

  5. B. Bose and S. N. Chatterjee, J. Photochem. Photobiol. 28, 149 (1995).

    Article  Google Scholar 

  6. M. Mosca, A. Ceglie, and L. Ambrosone, Chem. Phys. Lipids 164, 158 (2011).

    Article  Google Scholar 

  7. F. M. Megli and K. Sabatini, Chem. Phys. Lipids 125, 161 (2003).

    Article  Google Scholar 

  8. F. M. Megli, E. Conte, and L. Russo, Biochim. Biophys. Acta 1798, 1886 (2010).

    Article  Google Scholar 

  9. M. L. Wratten, G. Vangincel, A. A. Vantveld, et al., Biochemistry 31, 10901 (1992).

    Article  Google Scholar 

  10. M. Duda, K. Kawula, A. Pawlak, et al., Cell. Biochem. Biophys. 75, 433 (2017).

    Article  Google Scholar 

  11. W.-Yu Tai, Yi-C. Yang, H.-J. Lin, et al., J. Phys. Chem. 114, 15642 (2010).

    Article  Google Scholar 

  12. F. M. Megli, L. Russo, and K. Sabatini, FEBS Lett. 579, 4577 (2005).

    Article  Google Scholar 

  13. P. Jurkeviwicz, A. Olzynska, L. Cwiklik, et al., Biochim. Biophys. Acta 1818, 2388 (2012).

    Article  Google Scholar 

  14. M. G. Semenova, D. V. Zelikina, A. S. Antipova, et al., Food Hydrocoll. 52, 144 (2016).

    Article  Google Scholar 

  15. M. G. Semenova, A. S. Antipova, T. A. Misharina, et al., in Gums and Stabilisers for the Food Industry (Royal Soc. of Chem., Cambridge, 2016), Vol. 18, pp. 182–189.

    Google Scholar 

  16. N. N. Sazhina, A. S. Antipova, M. G. Semenova, and N. P. Palmina, Russ. J. Bioorg. Chem. 45 (1), 34 (2019).

    Article  Google Scholar 

  17. A. N. Kuznetsov, The Spin Probe Method (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  18. V. I. Binyukov, O. M. Alekseeva, E. M. Mil, et al., Dokl. Biochem. Biophys. 441, 245 (2011).

    Article  Google Scholar 

  19. R. Pecora, J. Nanopart. Res. 2, 123.(2000).

    Article  ADS  Google Scholar 

  20. N. T. J. Bailey, The Mathematical Approach to Biology and Medicine (Wiley, New York, 1967; Nauka, Moscow, 1970).

  21. N. P. Palmina, E. L. Maltseva, V. I. Binyukov, et al., Biophysics (Moscow) 63, 52 (2018).

    Article  Google Scholar 

  22. M. A. Soto-Arriaza, C. P. Sotomayor, and E. A. Lissi, J. Coll. Interface Sci. 323, 70 (2008).

    Article  ADS  Google Scholar 

  23. T. M. Tsubone, H. C. Junqueira, M. S. Baptista, and R. Itri, Biochim. Biophys. Acta 1861, 660 (2019).

    Article  Google Scholar 

  24. R. De Rosa, F. Spinozzi, and R. Itri, Biochim. Biophys. Acta 1860, 2299 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The EPR and AFM measurements were carried out at the Joint Use Centers for EPR and AFM of the Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Palmina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Abbreviations: AFM, atomic force microscopy; C16, 16-doxyl-stearic acid; Cas-Na, sodium caseinate; CEO, clove essential oil; EPR, electron paramagnetic resonance; LPO, lipid peroxidation; PC, phosphatidylcholine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmina, N.P., Bogdanova, N.G., Sazhina, N.N. et al. The Relationship between Lipid Peroxidation and Microviscosity in Phosphatidylcholine Liposomes. The Effects of a Plant Antioxidant and a Protein. BIOPHYSICS 64, 551–559 (2019). https://doi.org/10.1134/S0006350919040146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040146

Navigation