Skip to main content
Log in

The Properties of Biologically Significant Chloramine Oxidants: Reactivity and Its Dependence on the Structure of the Functional Atom Group

Biophysics Aims and scope Submit manuscript

Abstract

A procedure for the direct photometric determination of rate constants for the oxidation of dithiothreitol (a thiol-compound example) by N-chlorotaurine and N-chloroglycine and their analogues that have a different structure of the reaction center was developed. The time dependences of the sum of the chloramine oxidant absorbance and the absorbance of dithiane (the product of the dithiothreitol conversion) were calculated for different values of the bimolecular rate constant. The value of the rate constant was considered as established when the best agreement between the calculated curve and the measured kinetic curve of absorbance was observed. The oxidative activities of monochloramine oxidants showed little difference: the rate constants for N-chlorotaurine, N-chloroglycine, and N-chloro-2,2-dimethyltaurine were equal to 170 ± 4, 235 ± 9.8, and 145 ± 4.3 M–1 s–1, respectively. When the reaction center structure was modified by introducing the substituents of the hydrogen atom into the chloramine group, the activities of the compounds changed dramatically: the rate constants for N-isopropyl-N-chlorotaurine, N,N-dichloro-2,2-dimethyltaurine and N-acetyl-N-chloro- 2,2-dimethyltaurine determined using the competitive kinetics method were 9 ± 0.5, 12 000 ± 950 and 25 300 ± 3000 M–1 s–1, respectively. The reactivity of N-chloroglycine and the structural analogues of taurine chloramine with respect to thiol-compounds correlates with the magnitude of the active chlorine charge. Predictions about the reactivity of unknown structural analogues of N-chloramino acids and N-chlorotaurine were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. J. M. Zgliczynski, T. Stelmaszynska, J. Domanski, et al., Biochim. Biophys. Acta 235, 419 (1971).

    Article  Google Scholar 

  2. E. L. Thomas, M. B. Grisham, and M. M. Jefferson, J. Clin. Invest. 72, 441 (1983).

    Article  Google Scholar 

  3. C. C. Winterbourn, A. J. Kettle, and M. B. Hampton, Annu. Rev. Biochem. 85, 765 (2016).

    Article  Google Scholar 

  4. M. A. Murina, D. I. Roshchupkin, N. N. Kravchenko, et al., Biophysics 42 (6), 1311 (1997).

    Google Scholar 

  5. T. W. Stief, J. Kurz, M. O. Doss, et al., Thromb. Res. 97, 473 (2000).

    Article  Google Scholar 

  6. T. W. Stief, U. Feek, A. Ramaswamy, et al., Thromb. Res. 104, 361 (2001).

    Article  Google Scholar 

  7. M. A. Murina, O. D. Fesenko, V. I. Sergienko, et al., Bull. Exp. Biol. Med. 134 (1), 36 (2002).

    Article  Google Scholar 

  8. C. Martini, A. Hammer-Lrecher, M. Zuck, et al., Antimicrob. Agents Chemother. 56 (4), 1979 (2012).

    Article  Google Scholar 

  9. J. Mustedanagic, V. F. Ximenes, and M. Nagl, AMB Expr. 7, 102 (2017).

  10. M. Gruber, I. Moser, M. Nagl, et al., Antimicrob. Agents Chemother. 61 (5), e02527-16 (2017).https://doi.org/10.1128/AAC.02527-16 (2017).

  11. S. A. Rani, C. Celeri, R. Najafi, et al., Urolithiasis 44 (3), 247 (2016).

    Article  Google Scholar 

  12. W. Gottardi, M. Hagleitner, and M. Nagl, Arch. Pharm. Chem. Life Sci. 338 (10), 473 (2005).

    Article  Google Scholar 

  13. L. Wang, B. Belisle, M. Bassiri, et al., Antimicrob. Agents Chemother. 55 (6), 2688 (2011).

    Article  Google Scholar 

  14. A. C. Carr, C. L. Hawkins, S. R. Thomas, et al., Free Radic. Biol. Med. 30 (5), 526 (2001).

    Article  Google Scholar 

  15. C. L. Hawkins, D. I. Pattison, and M. J. Davies, Amino Acids 25, 259 (2003).

    Article  Google Scholar 

  16. A. V. Peskin and C. C. Winterbourn, Free Radic. Biol. Med. 30 (5), 572 (2001).

    Article  Google Scholar 

  17. D. I. Roshchupkin, K. V. Kondrashova, and M. A. Murina, Biophysics 59 (6), 849 (2014).

    Article  Google Scholar 

  18. W. Vogt, Free Radic. Biol. Med. 18 (1), 93 (1995).

    Article  Google Scholar 

  19. W. Gottardi and M. Nagl, Arch. Pharm. Pharm. Med. Chem. 9, 411 (2002).

    Article  Google Scholar 

  20. L. Wang, B. Khosrovi, and R. Najafi, Tetrahedron Lett. 49, 2193 (2008).

    Article  Google Scholar 

  21. M. A. Murina, D. I. Roshchupkin, N. A. Chudina, et al., Bull. Exp. Biol. Med. 147 (6), 704 (2009).

    Article  Google Scholar 

  22. D. I. Roshchupkin, M. A. Murina, and V. I. Sergienko, Biophysics 56 (5), 945 (2011).

    Article  Google Scholar 

  23. D. I. Roshchupkin, M. A. Murina, N. N. Kravchenko, et al., Biofizika 52 (3), 527 (2007).

    Google Scholar 

  24. M. A. Murina, D. I. Roshchupkin, K. V. Kondrashova, et al., Bull. Exp. Biol. Med. 157 (2), 207 (2014).

    Article  Google Scholar 

  25. D. I. Roshchupkin, K. V. Buravleva, M. A. Murina, et al., Biophysics 62 (1), 24 (2017).

    Article  Google Scholar 

  26. D. Braghiroli and M. D. Bella, Tetrahedron Lett. 37, 7319 (1996).

    Article  Google Scholar 

  27. K. S. Iyer and W. A. Klee, J. Biol. Chem. 248 (2), 707 (1973).

    Google Scholar 

  28. R. A. Johnson and F. D. Greene, J. Org. Chem. 40 (15), 2186 (1975).

    Article  Google Scholar 

  29. P. Nagy and M. T. Ashby, J. Am. Chem. Soc. 129 (45), 14 082 (2007).

    Article  Google Scholar 

  30. C. Storkey, M. J. Davies, and D. I. Pattison, Free Radic. Biol. Med. 73, 60 (2014).

    Article  Google Scholar 

  31. D. Luo, S. W. Smith, and B. D. Anderson, J. Pharm. Sci. 94 (2), 304 (2005).

    Article  Google Scholar 

  32. C. C. Winterbourn and D. Metodiewa, Free Radic. Biol. Med. 27 (3/4), 322 (1999).

    Article  Google Scholar 

  33. H. Fukada and K. Takahashi, J. Biochem. 87 (4), 1105 (1980).

    Google Scholar 

  34. M.-H. Chau and J. W. Nelson, FEBS Lett. 291 (2), 296 (1991).

    Article  Google Scholar 

  35. L. Carroll, D. I. Pattison, S. Fud, et al., Redox Biol. 12, 872 (2017).

    Article  Google Scholar 

  36. W. A. Prutz, Arch. Biochem. Biophys. 371 (1), 107 (1999).

    Article  Google Scholar 

Download references

FUNDING

This work was performed with partial support from the Russian Foundation for Basic Research, project no. 16-04-00220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Murina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshchupkin, D.I., Sorokin, V.L., Semenkova, G.N. et al. The Properties of Biologically Significant Chloramine Oxidants: Reactivity and Its Dependence on the Structure of the Functional Atom Group. BIOPHYSICS 64, 145–154 (2019). https://doi.org/10.1134/S0006350919020155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919020155

Keywords:

Navigation