The Influence of Weak Geomagnetic Disturbances on the Rat Cardiovascular System under Natural and Shielded Geomagnetic Field Conditions

Abstract—This work was aimed at studying the effects of weak geomagnetic disturbances on systolic blood pressure, the R–R interval, the low-frequency and high-frequency components, and its ratio of heart rate variability spectrum under natural and shielded geomagnetic field conditions. All tests were performed with male Wistar rats placed in simulation and shielded chambers. In the simulation chamber, significant shifts in the parameters under study were observed on the days of geomagnetic disturbances: an increase in systolic blood pressure, as well as in the ratio of low- to high frequency components of the heart rate variability spectrum. In the shielded chamber, the parameters were not considerably different under quiet and disturbed geomagnetic field. In addition, in the stimulation chamber, the value of the mean daily barometric pressure was inversely correlated with systolic blood pressure; this relationship was significantly weakened under shielded geomagnetic field conditions. It was concluded that weak geomagnetic disturbances affect cardiovascular and autonomic nervous system functions. The authors hypothesize that the enhanced effect of a slight decrease in barometric pressure on systolic blood pressure in the natural geomagnetic field could be associated with the effect of geomagnetic activity on the mechanisms of blood oxygenation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    N. G. Ptitsina, D. Villoresi, L. I. Dorman, et al., Usp. Fiz. Nauk 168 (7), 767 (1998).

    Article  Google Scholar 

  2. 2

    S. J. Palmer, M. J. Rycroft, and M. Cermack, Surv. Geophys. 27 (5), 557 (2006).

    ADS  Article  Google Scholar 

  3. 3

    K. Otsuka, G. Cornelissen, A. Weydahl, et al., Biomed. Pharmacother. 55 (1), 51s (2001).

    Article  Google Scholar 

  4. 4

    J. Vencloviene, R. Babarskiene, I. Milvidaite, et al., Int. J. Biometeorol. 58 (6), 295 (2014).

    Article  Google Scholar 

  5. 5

    J. Gmitrov and C. Ohkubo, Bioelectromagnetics 23 (5), 329 (2002).

    Article  Google Scholar 

  6. 6

    E. Stoupel, Biomed. Pharmacother. 56 (2), 247 (2002).

    Article  Google Scholar 

  7. 7

    R. McCraty, M. Atkinson, V. Stolc, et al., Int. J. Environ. Res. Public Health 14 (7), E770 (2017).

    Article  Google Scholar 

  8. 8

    S. Dimitrova, I. Stoilova, and I. Cholakov, Bioelectromagnetics 25 (6), 408 (2004).

    Article  Google Scholar 

  9. 9

    M. Jehn, L. J. Appel, and F. M. Sacks, Am. J. Hypertens. 15 (11), 941 (2002).

    Article  Google Scholar 

  10. 10

    R. M. Zaslavskaya, Z. A. Shcherban’, and S. I. Log-vinenko, Nauch. Ved. Belgorod. Gos. Univ., Ser. Med. Farm. 4 (99), 104 (2011).

    Google Scholar 

  11. 11

    N. V. Pizova, S. D. Prozorovskaya, and A. V. Pizov, Nevrol. Neiropsikhiatr. Psikhosomat. 1, 63 (2012).

    Google Scholar 

  12. 12

    J. Bartels, Z. Geophys. 14, 68 (1938).

    Google Scholar 

  13. 13

    N. A. Zabolotnaya, Indices of Geomagnetic Activity (LKI, 2007) [in Russian].

    Google Scholar 

  14. 14

    American Heart Association, Circulation 93, 1043 (1996).

  15. 15

    N. V. Kuzmenko, M. G. Pliss, N. S. Rubanova, et al., Transl. Med. 4 (1), 34 (2017).

    Google Scholar 

  16. 16

    I. M. Salman, Curr. Hypertens. Rep. 18 (3), 18 (2016).

    Article  Google Scholar 

  17. 17

    T. K. Breus, R. M. Baevskii, and A. G. Chernikova, J. Biomed. Sci. Engineer. 5, 341 (2012).

    Article  Google Scholar 

  18. 18

    V. F. Ovcharova, Vopr. Kurortol. Fizioterap. Lechebn. Fizkul’t. 2, 29 (1981).

    Google Scholar 

  19. 19

    C. A. Pope, D. W. Dockery, R. E. Kanner, et al., Am. J. Respir. Crit. Care Med. 159, 365 (1999).

    Article  Google Scholar 

  20. 20

    T. A. Zenchenko, A. G. Rekhtina, L. V. Poskotinova, et al., Bull. Exp. Biol. Med. 152 (4), 402 (2012).

    Article  Google Scholar 

  21. 21

    J. Gmitrov, Electromagn. Biol. Med. 24 (1), 31 (2005).

    Article  Google Scholar 

  22. 22

    N. V. Polytkina and E. L. Sorokin, Prakt. Med. 4 (59), 136 (2012).

    Google Scholar 

  23. 23

    Yu. I. Gurfinkel, N. V. Katse, O. V. Makeeva, and V. M. Mikhailov, in Methods of Nonlinear Analysis in Cardiology and Oncology (Universitet, Moscow, 2010), pp. 111–121 [in Russian].

    Google Scholar 

  24. 24

    L. Pauling and Ch. Coruell, Proc. Natl. Acad. Sci. USA. 22, 210 (1936).

    ADS  Article  Google Scholar 

  25. 25

    D. R. Shanklin, Exp. Mol. Pathol. 93 (3), 365 (2012).

    Article  Google Scholar 

  26. 26

    D. Muehsam, P. Lalezari, R. Lekhraj, et al., PLoS One 8 (4), e61752 (2013).

    ADS  Article  Google Scholar 

  27. 27

    I. Cicha, Y. Suzuki, N. Tateishi, et al., Am. J. Physiol. Heart Circ. Physiol. 284 (6), 2335 (2003).

    Article  Google Scholar 

  28. 28

    Yu. Ya. Varakin, V. G. Ionova, E. A. Sazanova, et al., Ekol. Cheloveka 7, 27 (2013).

    Google Scholar 

  29. 29

    Yu. I. Gurfinkel, V. V. Lyubimov, V. N. Oraevskii, et al., Biofizika 40 (4), 793 (1995).

    Google Scholar 

  30. 30

    A. L. Buchachenko, Usp. Khimii 83 (1), 1 (2014).

    Article  Google Scholar 

  31. 31

    M. S. Goldberg, N. Giannetti, R. T. Burnett, et al., Occup. Environ. Med. 65 (10), 659 (2008).

    Article  Google Scholar 

  32. 32

    V. V. Zinchuk, S. V. Gatsura, and N. V. Glutkina, Correction of Blood Oxygen Transport Function in Cardiovascular Pathologies (Grodno State Med. Univ., Grodno, 2016) [in Russian].

  33. 33

    A. Guduru, T. G. Martz, A. Waters, et al., Invest. Ophthalmol. Vis. Sci. 57 (13), 5278 (2016).

    Article  Google Scholar 

  34. 34

    D. Verhoeven, J. Teijaro, and D. L. Farber, Virology 390 (2), 151 (2009).

    Article  Google Scholar 

  35. 35

    P. Kamseng, S. Trakulsrichai, O. Trachoo, et al., Hematology 22 (2), 114 (2017).

    Article  Google Scholar 

  36. 36

    S. R. Malin and B. J. Srivastava, Nature 277, 646 (1979).

    ADS  Article  Google Scholar 

  37. 37

    E. Stoupel, E. Abramson, J. Sulkes, et al., Int. J. Biometerol. 38 (4), 199 (1995).

    Article  Google Scholar 

  38. 38

    G. Cornelissen, F. Halberg, T. Breus, et al., J. Atmos. Sol.-Terr. Phys. 64, 707 (2002).

    ADS  Article  Google Scholar 

  39. 39

    M. G. Pliss, N. V. Kuzmenko, and V. A. Tsyrlin, Transl. Med. 4 (6), 13 (2017).

    Google Scholar 

Download references


The work was supported by the Basic Science Research Program of State Academies for 2014–2020 (GP-14, Section 63).

Author information



Corresponding author

Correspondence to N. V. Kuzmenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Research conditions were coordinated with and approved by the Ethical Committee of the Center (no. 77 of 21.06.2010).

Additional information

Translated by E. V. Makeeva

Abbreviations: SBP, systolic blood pressure; ISI, inter-systolic interval; LF, low-frequency component of the heart rate variability spectrum; HF, high-frequency component of the heart rate variability spectrum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuzmenko, N.V., Shchegolev, B.F., Pliss, M.G. et al. The Influence of Weak Geomagnetic Disturbances on the Rat Cardiovascular System under Natural and Shielded Geomagnetic Field Conditions. BIOPHYSICS 64, 109–116 (2019).

Download citation

  • Keywords: geomagnetic activity index
  • magnetic field
  • shielding
  • arterial blood pressure
  • R–R interval
  • heart rate variability