Skip to main content
Log in

Alleviation of Stress-Induced Damage to Rat Brain Cells by Transcranial Electromagnetic Stimulation

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of transcranial electromagnetic stimulation on immobilization stress-induced damage to rat brain cells was studied. Electromagnetic stimulation was performed by microwave (λ = 5.6 mm) electromagnetic radiation with a power density of 0.67, 1.3, and 2.0 W/cm2 modulated by low-frequency pulses with a repetition rate of 78 Hz. A statistically significant blocking effect of electromagnetic stimulation on the process of stress-induced damage to brain cells (neurons) was detected in all three cases as the state of the neural network cells before and after stress exposure was compared. The most pronounced anti-stress effect was observed when electromagnetic stimulation with a power of 1.3 W/cm2 was used. A biophysical model of the anti-stress effect is proposed: according to the model, microwave radiation causes a globule–tangle phase transition in albumin, the major protein of the cerebrospinal fluid, and the tryptophan molecule fixed inside the globule is released. Free tryptophan enters the brain with the cerebrospinal fluid flow and enhances serotonin production, which blocks the stress effect, in the neural network of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. K. Khnychenko, Obzory Klin. Farmakol. Lekarstv. Terap. 10 (2), 3 (2012).

    Google Scholar 

  2. H. Komobuchi, N. Hato, M. Teraoka, et al., Acta Otolaryngol. 130 (1), 173 (2010).

    Article  Google Scholar 

  3. J. G. Boyd and T. Gordon, Mol. Neurobiol. 27 (3), 277 (2003).

    Article  Google Scholar 

  4. V. O. Samoilov, E. B. Shadrin, E. B. Filippova, et al., Biophysics (Moscow) 60 (2), 303 (2015).

    Article  Google Scholar 

  5. A. P. Suvorov, M. V. Gerasimova, A. I. Zavyalov, et al., Vestn. Dermatol. Venerol., No. 1, 26 (1994).

  6. V. G. Radionov et al., in Elektronika-KVCh Hardware System and Its Medica Applications, Ed. by L. G. Gasanov (Moscow, 1991), pp. 125–130 [in Russian].

    Google Scholar 

  7. A. B. Kogan, Fundamentals of the Physiology of Higher Nervous Activity (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  8. R. Bito, T. Shikano, and H. Kawabata, Biochim. Biophys. Acta 1646, 100 (2003).

    Article  Google Scholar 

  9. T. Brinker, E. Stopa, J. Morrison, and P. Klinge, Fluids Barriers CNS 11, 10 (2014). doi 10.1186/2045-8118-11-10

    Google Scholar 

  10. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [n Russian].

    Google Scholar 

  11. G. E. Dobretsov, N. K. Kurek, T. I. Syrejshchikova, et al., Nucl. Instrum. Methods Phys. Res. A 448, 471 (2000).

    Article  ADS  Google Scholar 

  12. A. L. Chizhevsky, Biophysical Mechanisms of Erythrocyte Sedimentation Reaction (Nauka, Novosibirsk, 1980) [in Russian].

    Google Scholar 

  13. E. B. Shadrin, A. V. Il’inskii, V. M. Kapralova, and V. O. Samoilov, Nauch.-Tekh. Vestn. S.-Peterb. Gos. Politekh. Univ. 77, 51 (2009).

    Google Scholar 

  14. L. A. Blumenfeld and A. N. Tikhonov, Soros. Obraz. Zh., No. 9, 91 (1997).

  15. Experimental Methods of Chemical Kinetics, Ed. by N. M. Emmanuel’ and M. G. Kuzmin (Moscow State Univ., Moscow, 1985) [in Russian].

  16. B. F. Minaev and L. B. Yashchuk, Spektroskopiya 95 (4), 596 (2003).

    Google Scholar 

  17. A. S. Moskvin and A. V. Zenkov, Solid State Commun. 80 (9), 739 (1991).

    Article  ADS  Google Scholar 

  18. A. S. Moskvin and A. V. Zenkov, Phys. Solid State 44 (10), 1811 (2002).

    Google Scholar 

  19. A. L. Buchachenko and V. L. Berdinskii, Khim. Zhizn’, No. 3, 8 (2005).

  20. A. F. Aleinikov and M. P. Tsapenko, Datchiki Sistemy 5, 2 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Shadrin.

Additional information

Translated by S. Semenova

Abbreviations: TEMS, transcranial electromagnetic stimulation; CR, conditioned reflex.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrin, E.B., Samoilov, V.O., Katznelson, Y.S. et al. Alleviation of Stress-Induced Damage to Rat Brain Cells by Transcranial Electromagnetic Stimulation. BIOPHYSICS 63, 946–955 (2018). https://doi.org/10.1134/S0006350918060234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918060234

Keywords:

Navigation