Impact of Weakened Geomagnetic Field on Proliferative Activity and Viability of K562 and C3H10T1/2 Cells

Abstract

The impact of weakened geomagnetic field on K562 and C3H10T1/2 cells, including cells under condition of induced oxidative stress, is studied. The weakened geomagnetic field is found to affect cell survival; the application of this result is of significant interest. Possible molecular mechanisms that are responsive to magnetic fields are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    A. P. Dubrov, The Geomagnetic Field and Life: Geomagnetobiology (Springer, New York, 1989).

    Google Scholar 

  2. 2

    N. A. Belyavskaya, Adv. Space 34 (7), 1566 (2004).

    ADS  Article  Google Scholar 

  3. 3

    B. Jia and P. Shang, Space Med. Eng. 22, 308 (2009).

    Google Scholar 

  4. 4

    W. Mo, Y. Liu, H. M. Cooper, and R. He, Bioelectromagnetics 33, 238 (2012).

    Article  Google Scholar 

  5. 5

    E. A. Nikitina, A. V. Medvedeva, M. S. Gerasimenko, et al., Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova 67 (2), 246 (2017).

    Google Scholar 

  6. 6

    A. L. Buchachenko, Usp. Khim. 83 (1), 1 (2014).

    Article  Google Scholar 

  7. 7

    A. L. Buchachenko, D. A. Kouznetsov, et al., Proc. Natl. Acad. Sci. U. S. A. 102 (31), 10 793 (2005).

    Article  Google Scholar 

  8. 8

    I. Y. Belyaev, Y. D. Alipov, and M. Harms-Ringdahl, Biochim. Biophys. Acta 1336 (3), 465 (1997).

    Article  Google Scholar 

  9. 9

    C. F. Martino and P. R. Castello, PloS One 6 (8), 1 (2011).

    Google Scholar 

  10. 10

    D. L. Wang, X. S. Wang, R. Xiao, et al., Biochem. Biophys. Res. Commun. 376, 363 (2008).

    Article  Google Scholar 

  11. 11

    S. V. Surma, G. B. Belostotskaya, et al., Bioelectromagnetics 35 (8), 537 (2014).

    Article  Google Scholar 

  12. 12

    V. M. Kolmakov, V. Iu. Kulikov, et al., Zh. Microbiol. Epidemiol. Immunobiol. 3, 68 (2002).

    Google Scholar 

  13. 13

    X. K. Wang, Q. F. Ma, W. Jiang, et al., Geomicrobiol. J. 25, 296 (2008).

    Article  Google Scholar 

  14. 14

    L. M. Nepomniashchikh, E. L. Lushnikova, M. G. Klinnikova, et al., Bull. Exp. Biol. Med. 124, 455 (1997).

    Google Scholar 

  15. 15

    M. A. Osipenko, L. M. Mezhevikina, I. V. Krasts, et al., Biophysics (Moscow) 53 (4), 317 (2008).

    Article  Google Scholar 

  16. 16

    I. S. Eldashev, B. F. Shchegolev, S. V. Surma, and G. B. Belostotskaya, Biophysics (Moscow) 55 (5), 765 (2010).

    Article  Google Scholar 

  17. 17

    C. F. Martino, L. Portelli, K. McCabe, et al., Bioelectromagnetics 31, 649 (2010).

    Article  Google Scholar 

  18. 18

    E. Garoui, A. Troudi, H. Fetoui, et al., Exp. Toxicol. Pathol. 64, 837 (2012).

    Article  Google Scholar 

  19. 19

    E. A. Hassoun, F. Li, A. Abushaban, and S. J. Stoh, J. Appl. Toxicol. 21, 212 (2001).

    Article  Google Scholar 

  20. 20

    M. Valko, D. Leibfritz, J. Moncol, et al., Int. J. Biochem. Cell Biol. 39, 44 (2007).?

    Article  Google Scholar 

  21. 21

    E. S. Cannizzo, C. C. Clement, R. Sahu, et al., J. Proteomics 74 (11), 2313 (2011).

    Article  Google Scholar 

  22. 22

    A. L. Buchachenko, New Isotopy in Chemistry and Physics (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  23. 23

    A. L. Buchachenko and D. A. Kuznetsov, J. Phys. Chem. Biophys. 4 (2), 1 (2014).

    Google Scholar 

  24. 24

    G. G. Polyanskaya and G. A. Sakuta, Catalogue of the Russian Collection of Cell Cutures, Ed. by G. P. Pinaev (OMGPU, St. Petersburg–Omsk, 1999) [in Russian].

  25. 25

    G. A. Sakuta, E. V. Baidyuk, M. V. Dobrogorskaya, et al., Byull. Eksp. Biol. Med. 150 (9), 292 (2010).

    Google Scholar 

  26. 26

    T. Mosmann, J. Immunol. Methods 65 (1–2), 55 (1983).

  27. 27

    H. Lee, C. M. Bien, A. L. Hughes, et al., Mol. Microbiol. 65 (4), 1018 (2007).

    Article  Google Scholar 

  28. 28

    G. Olivieri, C. Hess, E. Savaskan, C. Ly, et al., J. Pineal. Res. 31, 320 (2001).

    Article  Google Scholar 

  29. 29

    J. Araya, M. Maruyama, A. Inoue, et al., Am. J. Physiol. Lung Cell Mol. Physiol. 283 (4), 849 (2002).

    Article  Google Scholar 

  30. 30

    S. J. Yang, J. Pyen, I. Lee, et al., J. Biochem. Mol. Biol. 37, 480 (2004).

    Google Scholar 

  31. 31

    W. Zou, M. Yan, W. Xu, et al., J. Neurosci. Res. 64, 646 (2001).

    Article  Google Scholar 

  32. 32

    W. Zou, J. Zeng, M. Zhuo, et al., J. Neurosci. Res. 67, 837 (2002).

    Article  Google Scholar 

  33. 33

    P. A. Kuznetsov, B. V. Farmakovskii, A. Yu. Ashkinazi, et al., RF Patent No. 2 324 989 (2008).

  34. 34

    B. Scharf, Chem. Biol. 20, 922 (2014).

    Article  Google Scholar 

  35. 35

    D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, et al., Crit. Rev. Toxicol. 43, 316 (2013).

    Article  Google Scholar 

  36. 36

    C. H. Grissom, Chem. Rev. 95, 3 (1995).

    Article  Google Scholar 

  37. 37

    U. E. Steiner and T. Ulrich, Chem. Rev. 89, 51 (1989).

    Article  Google Scholar 

  38. 38

    C. F. Martino, H. Perea, et al., Bioelectromagnetics 31, 296 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The facility of the Observatory of Ecological Safety, Scientific Park of the Resource Center, St. Petersburg was used in this study. This study was supported by the Program for Basic Research of the State Academies for 2014–2020 (GP-14, section 63).

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. F. Shchegolev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Boutanaev

Abbreviations: ROS, reactive oxygen species; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, V.A., Sakuta, G.A., Stefanov, V.E. et al. Impact of Weakened Geomagnetic Field on Proliferative Activity and Viability of K562 and C3H10T1/2 Cells. BIOPHYSICS 63, 940–945 (2018). https://doi.org/10.1134/S0006350918060039

Download citation

Keywords:

  • magnetic field
  • reactive oxygen species
  • radical pairs
  • K562 cells
  • C3H10T1/2 cells