Skip to main content
Log in

Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In this paper, the changes in the frequency and amplitude of action potentials (AP) were investigated depending on the depolarization caused by the Ca2+ channels activity during the spontaneous synchronous activity (SSA) of hippocampal neurons in culture. It is known that the pacemaker neuronal electrical activity can be both tonic and bursting. Using the image analysis to measure [Са2+]i and patch-clamp to register the membrane potential we show that depolarization caused by the GABA(A) receptor inhibitor results in a pattern of SSA in which tonic APs frequency of 2−3 Hz are generated by a neuron without any changes in cytosolic free Ca2+ concentration, ([Ca2+]i). The tonic mode is interrupted by bursts activity, which is accompanied by slow depolarization and calcium pulses. The inhibitor of T-type calcium channels, ML218, suppresses this process. The frequency and amplitude of the AP are regulated by slow depolarization pulses as follows: on the depolarization front, the APs frequency increases. At the same time, the amplitude decreases due to Na+ channels inactivation. The higher is the depolarization rate, the higher is the APs frequency. If slow depolarization amplitude exceeds Na+ channels reactivation potential, the neuronal impulse activity stops. As the [Ca2+]i increases and Ca2+-dependent K+ channels are activated, depolarization amplitude decreases slowly, and Na+ channels are reactivated, which leads to a gradual increase in the amplitude of APs against the background of depolarization decrease. The frequency of APs on the backside of depolarization pulse slows down to 3–4 Hz due to the occurrence of the faster Ca2+-potential oscillations (micro bursts of AP). Under these conditions, only one AP can be generated due to rapid depolarization at the leading edge. After that, APs generation is suppressed due to Na+ channel inactivation. The frequency of APs in this case coincides with the Ca2+ channel activation frequency (3−4 Hz). The burst firing is terminated due to [Ca2+]i increase, Ca2+-dependent K+ channels activation, and voltage-gated Ca2+ channels (VGCC) inactivation. As a result, the membrane is hyperpolarized even more (10 mV lower than the critical potential), that suppress AP generation, activate HCN-like channels and reactivate Na+ and VGCC. The activity of HCN-like channels increases, the membrane slowly depolarizes and reaches the threshold potential. The generation of tonic APs begins, and then, the Ca2+ channels opens, and Ca2+ potential and Ca2+ signal induced again. Thus, the Ca2+-channels, is determining the pulse of slow depolarization, control the frequency and the amplitude of APs during SSA, regulating the activation and inactivation conditions of Na+ channels. The T-type channels inhibitors reduce the duration of burst firing and Ca2+ impulse in neurons in vitro, stimulating their survival during hyperexcitation and ischemia. Thus, reducing the Ca2+ pulse duration caused by the inhibitors of T-type Ca2+-channels, can be one of the reasons for the known neuroprotective effect of these compounds.

Keywords: spontaneous synchronous activity of neurons, calcium signal, T-type calcium channels, voltage-gated calcium channels, action potential, genesis of bursting activity, action potential bursts, depolarization shift, critical potential

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. M. Lu, W. Guido, and S. M. Sherman, J. Neurosci. 68 (6), 2185 (1992).

    Google Scholar 

  2. S. Anava, A. Greenbaum, E. Ben Jacob, et al., Biophys. J. 96 (4), 1661 (2009).

    Article  ADS  Google Scholar 

  3. A. V. Kononov, N. V. Ball, and V. P. Zinchenko, Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 5 (2), 162 (2011).

    Google Scholar 

  4. D. A. McCormick and D. Contreras, Annu. Rev. Physiol. 63, 815 (2001).

    Article  Google Scholar 

  5. I. Nikonenko, M. Bancila, A. Bloc, et al., Mol. Pharmacol. 68 (1), 84 (2005).

    Google Scholar 

  6. B. J. Kopecky, R. Liang, and J. Bao, Pflügers Arch. 466 (4), 757 (2014).

  7. B. Nilius, K. Tala, and A. Verkhratsky, Cell Calcium 40 (2), 81 (2006).

    Article  Google Scholar 

  8. D. Kim, I. Song, S. Keum, et al., Neuron 31 (1), 35 (2001).

    Article  Google Scholar 

  9. I. Song, D. Kim, S. Choi, et al., J. Neurosci. 24 (22), 5249 (2004).

    Article  Google Scholar 

  10. S. Huc, A. Monteil, I. Bidaud, et al., Biochim. Biophys. Acta 1793 (6), 947 (2009).

    Article  Google Scholar 

  11. E. Perez-Reyes, L. L. Cribbs, A. Daud, et al., Cell. Mol. Life Sci. 56 (7–8), 660 (1999).

  12. M. Chevalier, P. Lory, C. Mironneau, et al., Eur. J. Neurosci. 23 (9), 2321 (2006).

    Article  Google Scholar 

  13. J. Proft and N. G. Weiss, Mol. Pharmacol. 87 (6), 890 (2015).

    Article  Google Scholar 

  14. E. Perez-Reyes, Mol. Pharmacol. 77 (2), 136 (2010).

    Article  Google Scholar 

  15. J. L. Sánchez-Alonso, J. V. Halliwell, and A. Colino, Neurosci. Lett. 439 (3), 275 (2008).

  16. R. Iyer, M. A. Ungless, and A. A. Faisa, Sci. Rep. 7 (1), 5248 (2017).

    Article  ADS  Google Scholar 

  17. R. Rehak, T. M. Bartoletti, J. D. T. Engbers, et al., PloS One 8, e61844 (2013). doi 10.1371/journal.pone. 0061844

    Article  ADS  Google Scholar 

  18. J. Wolfart and J. J. Roeper, Neuroscience 22 (9), 3404 (2002).

    Article  Google Scholar 

  19. J. Xu and C. E. Clancy, PloS One 3 (4), e2056 (2008). doi 10.1371/journal.pone. 0002056

  20. J. T. Wolfe, H. Wang, E. Perez-Reyes, and P. Q. Barrett, J. Physiol. 538 (2), 343 (2002).

    Article  Google Scholar 

  21. J. Chemin, A. Mezghrani, I. Bidaud, et al., J. Biol. Chem. 282 (45), 32710 (2007).

    Article  Google Scholar 

  22. J. Chemin, A. Monteil, E. Perez-Reyes, et al., EMBO J. 20 (24), 7033 (2001).

    Article  Google Scholar 

  23. J. Chemin, J. Nargeot, and P. Lory, J. Biol. Chem. 282 (4), 2314 (2007).

    Article  Google Scholar 

  24. K. Talavera, M. Staes, A. Janssens, et al., J. Gen. Physiol. 124 (3), 225. (2004).

    Article  Google Scholar 

  25. Y. Zhang, L. L. Cribbs, and J. Satin, Am. J. Physiol. Heart Circ. Physiol. 278 (1), H184 (2000).

    Article  Google Scholar 

  26. J. T. Wolfe, H. Wang, J. Howard, et al., Nature 424 (6945), 209 (2003).

    Article  ADS  Google Scholar 

  27. J. Tao, M. E. Hildebrand, P. Liao, et al., Mol. Pharmacol. 73 (6), 1596 (2008).

    Article  Google Scholar 

  28. M. E. Hildebrand, L. S. David, J. Hamid, et al., J. Biol. Chem. 282 (29), 21043 (2007).

    Article  Google Scholar 

  29. M. T. Nelson, S. M. Todorovic, and E. Perez-Reyes, Curr. Pharmaceut. Design 12 (18), 2189 (2006).

    Article  Google Scholar 

  30. S. M. Todorovic and V. Jevtovic-Todorovic, Pflügers Arch. 466 (4), 701 (2014).

  31. B. J. Kopecky, R. Liang, and J. Bao, Eur. J. Physiol. 466 (4), 757 (2014).

    Article  Google Scholar 

  32. P. Orestes, D. Bojadzic, R. M. Chow, and S. M. Todorovic, Mol. Pharmacol. 75 (3), 542 (2009).

    Article  Google Scholar 

  33. N. C. Spitzer and E. X. Olson, J. Neurobiol. 26 (3), 316 (1995).

    Article  Google Scholar 

  34. H. P. Robinson, M. Kawahara, et al., J. Neurophysiol. 70 (4), 1606 (1993).

    Article  Google Scholar 

  35. J. N. Guzman, J. Sánchez-Padilla, C. S. Chan, and D. J. Surmeier, J. Neurosci. 29 (35), 11011 (2009).

    Article  Google Scholar 

  36. D. J. Surmeier and P. T. Schumacker, J. Biol. Chem. 288 (15), 10736 (2013).

    Article  Google Scholar 

  37. O. J. Lieberman, S. J. Choi, E. Kanter, et al., eNeuro. 4 (6), 0167 (2017).

  38. D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Nat. Rev. Neurosci. 18 (2), 101 (2017).

    Article  Google Scholar 

  39. C. S. Chan, J.N. Guzman, E. Ilijic, et al., Nature 447 (7148), 1081 (2007).

    Article  ADS  Google Scholar 

  40. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem. 260 (6), 3440 (1985).

    Google Scholar 

  41. H. Hayashi, H. Miyata, H. Terada, et al., Jpn. Heart J. 35 (5), 673 (1994).

    Article  Google Scholar 

  42. L. Cozzi, P. D’Angelo, and V. Sanguineti, Biol. Cybern. 94 (5), 335 (2006).

    Article  Google Scholar 

  43. S. M. Cain and T. P. Snutch, Biochim. Biophys. Acta 1828 (7), 1572 (2013).

    Article  Google Scholar 

  44. M. V. Turovskaya, E. A. Turovsky, V. P. Zinchenko, et al., Neurosci. Lett. 516 (1), 151 (2012).

    Article  Google Scholar 

  45. E. A. Turovsky, M. V. Turovskaya, S. G. Gaidin, and V. P. Zinchenko, Arch. Biochem. Biophys. 615, 35 (2017).

    Article  Google Scholar 

  46. E. A. Turovsky, V. P. Zinchenko, S. G. Gaidin, and M. V. Turovskaya, Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 12, 74 (2018).

    Google Scholar 

  47. V. P. Zinchenko, M. V. Turovskaya, I. Yu. Teplov, et al., Biophysics (Moscow) 61 (1), 85 (2016).

    Article  Google Scholar 

  48. E. M. Izhikevich, Int. J. Bifurcat. Chaos 10 (6), 1171 (2000).

    Article  MathSciNet  Google Scholar 

  49. H. P. Robinson, K. Torimitsu, Y. Jimbo, et al., Jpn. J. Physiol. 43 (1), 125 (1993).

  50. V. V. Dynnik, A. V. Kononov, A. V. Sergeev, I. Yu. Tep-lov, V. P. Zinchenko, Plos One. 10 (7) e0134145. doi: 10.1371/journal.pone.0134145 (2015)

  51. D. Cooper, Neurochem. Int. 41 (5), 333 (2002).

    Article  Google Scholar 

  52. H. A. Swadlow, A. G. Gusev, and T. Bezdudnaya, J. Neurosci. 22 (17), 7766 (2002).

    Article  Google Scholar 

  53. V. P. Zinchenko, E. A. Turovsky, M. V. Turovskaya, et al., Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 10 (2), 118 (2016).

    Google Scholar 

  54. V. P. Zinchenko, S. G. Gaidin, I. Y. Teplov, and A. M. Kosenkov, Biochemistry (Moscow). Suppl. Ser. A: Membr. Cell Biol. 11 (4), 261 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Committee of Science of MES RK, grant AP05133528.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zinchenko.

Additional information

1The article was translated by the authors.

Abbreviations: SSA – spontaneous synchronous activity, Ca2+ signal, T-type Ca2+ channels, VGCC – voltage-gated calcium channels, AP – action potential, genesis of bursting activity, action potential burst, depolarization shift, critical potential, [Ca2+]i – cytoplasmic Ca2+ concentration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplov, I.Y., Tuleukhanov, S.T. & Zinchenko, V.P. Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons. BIOPHYSICS 63, 566–575 (2018). https://doi.org/10.1134/S0006350918040206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040206

Keywords

Navigation