Skip to main content
Log in

Energy Landscapes of Macromolecules with Unique 3D Structures

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—A paradox of the convergence of the potential energy surface (PES) presented as a sum of pairwise interactions was formulated. Regularities of the formation of a multidimensional PES in the space of torsion (dihedral) angles were considered for the case of the macromolecules that form unique 3D structures. The presence of a single global minimum on the PES was shown to be impossible for nonchiral macromolecules. The chirality of the spatial structure of a macromolecule creates conditions for the formation of a single global minimum on the PES. The structure was studied for a model PES such that components of the multidimensional Fourier series exponentially damped with the increasing number of harmonics. It was proposed to describe the interaction between conformational degrees of freedom in the space of torsion angles by assigning distribution functions to linear combinations of harmonic numbers. A mathematical tool was developed for this purpose. The structure of the PES was studied for the cases of the Gaussian and Lorentzian distribution functions for the linear combinations of the Fourier series harmonic numbers. It was shown that the properties of such a PES can be described by introducing two generalized variables. A feature of the PES is the existence of a central funnel, which leads to a global energy minimum, and satellite funnels, which acts as traps during the folding process. Relatively rapid folding events (the achievement of the global energy minimum) may take place in the configuration space region that corresponds to the central funnel. This structure of the PES makes it possible to identify the configuration space areas that are important for the folding and to understand the basic difference between reversible (in solution) and irreversible (using an atomic force microscope) unfolding of unique 3D structures of biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (KDU, Moscow, 2002; Academic, New York, 2002).

  2. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macrololecules (Nauka, Moscow, 1989; AIP Press, New York, 1994).

  3. A. B. Rubin, Biophysics, Vol. 1: Theoretical Biophysics (Institute of Computer Research, Moscow–Izhevsk, 2013) [in Russian].

  4. K. V. Shaitan, Biofizika 39, 949 (1994).

    Google Scholar 

  5. K. V. Shaitan, in Stochastic Dynamics of Reacting Biomolecules, Ed. by W. Ebeling, L. Schimansky-Gefer, and Y. M. Romanovsky (World Scientific, Singapore, 2003), pp. 283–308.

    Google Scholar 

  6. K. V. Shaitan, Khim. Fiz. 33 (7), 53 (2014).

    Google Scholar 

  7. B. Kuhlman, G. Dantas, G. C. Ireton, et al., Science 302, 1364 (2003).

    Article  ADS  Google Scholar 

  8. A. V. Popinako, O. V. Levtsova, M. Yu. Antonov, et al., Biophysics (Moscow) 56 (6), 1078 (2011).

    Article  Google Scholar 

  9. D. A. Dolgilkh, O. B. Ptitsyn, A. N. Fedorov, et al. Mol. Biol. (Moscow) 26, 1242 (1992).

    Google Scholar 

  10. P. G. Wolynes, Phil. Trans. R. Soc. B 363, 453 (2005).

    Article  ADS  Google Scholar 

  11. E. R. Henry, R. B. Best, and W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 110, 17880 (2013).

    Article  ADS  Google Scholar 

  12. K. V. Shaitan, Biophysics (Moscow) 62 (6), 892 (2017).

    Article  Google Scholar 

  13. J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins Struct. Funct. Genet. 21 (3), 167 (1995).

    Article  Google Scholar 

  14. K. V. Shaitan, Biophysics (Moscow) 60 (5), 692 (2015).

    Article  Google Scholar 

  15. K. V. Shaitan, M. A. Lozhnikov, and G. M. Kobelkov, Biophysics (Moscow) 61 (4), 531 (2016).

    Article  Google Scholar 

  16. K. V. Shaitan, Biophysics (Moscow) 62 (1), 1 (2017).

    Article  Google Scholar 

  17. K. V. Shaitan, M. A. Lozhnikov and G. M. Kobelkov, Biophysics (Moscow) 62, 182 (2017).

    Article  Google Scholar 

  18. K. V. Shaitan, Biophysics (Moscow) 63 (1), 1 (2018).

    Article  Google Scholar 

  19. V. K. de Souza, J. D. Stevenson, S. P. Niblett, et al., J. Chem. Phys. 146, 124103 (2017).

    Article  ADS  Google Scholar 

  20. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, 2002).

    MATH  Google Scholar 

  21. V. A. Zorich, Mathematical Analysis, Part 1 (Moscow, 2002) [in Russian].

  22. C. Levinthal, J. Chem. Phys. 65, 44 (1968).

    Google Scholar 

  23. K. V. Shaitan, F. Yu. Popelenskii, and G. A. Armeev, Biophysics (Moscow) 62, 348 (2017).

    Article  Google Scholar 

  24. A. V. Finkelstein and O. V. Galzitskaya, Phys. Life Rev. 1, 23 (2004).

    Article  ADS  Google Scholar 

  25. N. Y. Marchenko, V. V. Marchenkov, G. V. Semisotnov, and A. V. Finkelstein, Proc. Natl. Acad. Sci. U. S. A. 112 (50), E6831 (2015).

    Article  ADS  Google Scholar 

  26. A. V. Finkelstein and S. O. Garbuzynskiy, Biophysics (Moscow) 61 (1), 1 (2016).

    Article  Google Scholar 

  27. A. N. Nekrasov, J. Biomol. Struct. Dyn. 21 (5), 615 (2004).

    Article  Google Scholar 

  28. K. V. Shaitan, Macromolec. Symp. 106, 321 (1996).

    Article  Google Scholar 

  29. V. I. Goldansky and V. V. Kuzmin, Usp. Fiz. Nauk 157, 3 (1989).

    Article  Google Scholar 

  30. V. A. Tverdislov, Biophysics (Moscow) 58 (1), 128 (2013).

    Article  Google Scholar 

  31. A. Zygmund, Trigonometric Series, 2nd ed., Vol. 1 (Cambridge, UK: Cambridge Univ. Press, 1959; Mir, Moscow, 1965).

  32. N. K. Balabaev and K. V. Shaitan, in Methods of Computer Modeling for Analyzing Polymers and Biopolymers (LKI, Moscow, 2009), pp. 35–62 [in Russian].

    Google Scholar 

  33. V. A. Zorich, Mathematical Analysis, Part 2 (Moscow, 2002) [in Russian].

  34. M. V. Fedoryuk, Saddle-Point Method (URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  35. A. T. Fomenko and D. B. Fuks, A Course in Homotopical Topology (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  36. G. C. Rollins and K. A. Dill, J. Am. Chem. Soc. 136, 11420 (2014).

    Article  Google Scholar 

  37. M. Carrion-Vazquez, A. F. Oberhauser, S. B. Fowler, et al., Proc. Natl. Acad. Sci. U. S. A. 96, 3694 (1999).

    Article  ADS  Google Scholar 

  38. H. Yu, D. R. Dee, Xia Liu, et al., Proc. Natl. Acad. Sci. U. S. A. 112, 8308 (2015).

    Article  ADS  Google Scholar 

  39. W. Lee, X. Zeng, H.-X. Zhou, et al., J. Biol. Chem. 285, 38167 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to M.S. Sidorenko for help in constructing function graphs; G.A. Armeev, F.Yu. Popelenskii, A.A. Tuzhilin, and other attendees of regular seminars on structural biology (the Biological Faculty and Mechanical and Mathematical Faculty of Moscow State University) for fruitful mathematical discussions; N.K. Balabaev and A.V. Finkel’shtein for discussing the results; and M.P. Kirpichnikov and A.T. Fomenko for attention and support of this work.

This work was supported by the Russian Science Foundation (project nos. 14-24-00031 (the second section of the article) and 14-50-00029 (the third section)). The basics of the dynamics of conformationally mobile systems (the first section of the article) were developed as part of the state program of the Federal Agency for Scientific Organizations of Russia (problem no. 0082-2014-0001, project no. AAAA-A17-117040610310-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shaitan.

Additional information

Translated by T. Tkacheva

1Abbreviations: PES, potential energy surface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaitan, K.V. Energy Landscapes of Macromolecules with Unique 3D Structures. BIOPHYSICS 63, 485–496 (2018). https://doi.org/10.1134/S0006350918040152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040152

Navigation