Skip to main content
Log in

The Lamé Problem Applied to a Blood Vessel with an Active Wall

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—In this paper we consider a two-dimensional problem of the stress distribution in the wall of a blood vessel with a lumen size that may vary depending on activation of smooth-muscle cells. Based on experimental data, the dependence of the circumferential stress on the parameter of smooth-muscle activation was obtained and the dependence of the latter on the cell membrane potential was described. It has been shown that contractile activity in smooth muscles (myogenic reaction) produces a significant decrease in the stresses. The maximum value of circumferential stress is achieved at the outer vessel wall, whereas the maximum value of the radial stress is reached at the inner wall. The contractions of the smooth-muscle cells reduce the circumferential stretch and smooth out the heterogeneity of its distribution in the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. R. Pries and T. W. Secomb, Microcirculation 15 (8), 753 (2008). doi 10.1080/10739680802229076

    Article  Google Scholar 

  2. M. Ursino, P. Di Giammarco, and E. Belardinelli, IEEE Trans. Biomed. Eng. 36 (2), 192 (1989).

    Article  Google Scholar 

  3. M. Ursino and P. Di Giammarco, Ann. Biomed. Eng. 19 (1), 15 (1991).

    Article  Google Scholar 

  4. B. E. Carlson and T. W. Secomb, Microcirculation 12 (4), 327 (2005).

    Article  Google Scholar 

  5. M. Ursino and C. A. Lodi, Am. J. Physiol. 274 (5), Pt 2), H1715 (1998).

  6. E. VanBavel and B. G. Tuna, PloS One 9 (1), e86901 (2014). doi 10.1371/journal.pone.0086901

    Article  ADS  Google Scholar 

  7. M. Banaji, I. Tachtsidis, D. Delpy, and S. Baigent, Math. Biosci. 194 (2), 125 (2005).

    Article  MathSciNet  Google Scholar 

  8. T. Moroz, M. Banaji, M. Tisdall, C. E. Cooper, et al., Adv. Exp. Med. Biol. 737, 293 (2012).

    Article  Google Scholar 

  9. S. Payne, H. Morris, and A. Rowley, Conf. Proc. IEEE Eng. Med. Biol. Soc. 3, 2295 (2005).

    Google Scholar 

  10. S. J. Payne, Math. Biosci. 204 (2), 260 (2006).

    Article  MathSciNet  Google Scholar 

  11. H. Chen, T. Luo, X. Zhao, et al., Biomaterials 34, 7575 (2013).

    Article  Google Scholar 

  12. V. P. Le, J. K. Cheng, J. Kim, et al., J. R. Soc. Interface 12, 20141350 (2015). doi 10.1098/rsif.2014.1350

    Article  Google Scholar 

  13. G. L. Baumbach, J. G. Walmsley, and M. N. Hart, Am. J. Pathol. 133 (3), 464 (1988).

    Google Scholar 

  14. B. Zhou, A. Rachev, and T. Shazly, J. Mech. Behav. Biomed. Mater. 48, 28 (2015). doi 10.1016/ j.jmbbm.2015.04.004

    Article  Google Scholar 

  15. H. Chen and G. S. Kassab, Sci. Rep. 7 (1), 9339 (2017). doi 10.1038/s41598-017-08748-7

    Article  ADS  Google Scholar 

  16. Y. Lu, H. Wu, J. Li, Y. Gong, et al., Sci. Rep. 7 (1), 13911 (2017). doi 10.1038/s41598-017-14276-1

    Article  ADS  Google Scholar 

  17. M. A. Zulliger, A. Rachev, and N. Stergiopulos, Am. J. Physiol. Heart Circ. Physiol. 287, H1335 (2004).

    Article  Google Scholar 

  18. J. D. Humphrey and S. Na, Ann. Biomed. Eng. 30(4), 509 (2002).

    Article  Google Scholar 

  19. H. J. Knot and M. T. Nelson, J. Physiol. 508 (1), 199 (1998).

    Article  Google Scholar 

  20. A. E. Green and J. E. Adkins, Large Elastic Deformations and Non-Linear Continuum Mechanics (Clarendon Press, Oxford, 1960; Mir, Moscow, 1965).

  21. Y. Fung, Biomechanics (Springer-Verlag, 1981).

    Book  MATH  Google Scholar 

  22. E. D. Högestätt, K.-E. Andersson, and L. Edvinsson, Acta Physiol. Scand. 117, 49 (1983).

  23. Y. Huo, Y. Cheng, X. Zhao, et al., Am. J. Physiol. Heart Circ. Physiol. 302, H2058 (2012). doi 10.1152/ajpheart.00758.2011

    Article  Google Scholar 

  24. V. A. Buchin and N. K. Shadrina, Fluid Dyn. 45 (2), 211 (2010).

  25. N. K. Shadrina, Fluid Dyn. 51 (3), 372 (2016). doi 10.7868/S0568528116030129

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Fundamental Research Program of the State Academies by 2013–2020, project GP-14, section 64.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Shadrina.

Additional information

Translated by I. Matiulko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrina, N.K. The Lamé Problem Applied to a Blood Vessel with an Active Wall. BIOPHYSICS 63, 629–636 (2018). https://doi.org/10.1134/S0006350918040140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040140

Navigation