Skip to main content
Log in

Analysis of the Recurrence of Noisy Time Series

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—A method based on the use of recurrence plots was proposed for numerical evaluation of the character of the dynamics of noisy time series under conditions where external noise transforms recurrence plots that correspond to qualitatively different dynamic modes such that they become virtually indistinguishable. As demonstrated using the difference logistic map as an example, the method makes it possible to distinguish random fluctuations from deterministic oscillations, including both regular and chaotic oscillations, even when the signal-to-noise ratio is relatively high. An increase in noise level was additionally shown to lead to a convergence of the recurrent properties of regular and chaotic oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Kaplan and L. Glass, Understanding Nonlinear Dynamic (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  2. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  3. S. P. Otto and T. Day, A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution (Princeton Univ. Press, Princeton, NJ, 2007).

    MATH  Google Scholar 

  4. T. V. Zhukova, N. P. Radchikova, T. M. Mikheyeva, et al., Inland Water Biol. 10 (3), 250 (2017).

    Article  Google Scholar 

  5. A. B. Medvinsky and A. V. Rusakov, Chaos Soliton Fract. 44, 390 (2011).

    Article  ADS  Google Scholar 

  6. A. B. Medvinsky, A. V. Rusakov, and N. I. Nurieva, Ecol. Complex. 14, 108 (2013).

    Article  Google Scholar 

  7. A. B. Medvinsky, N. I. Nurieva, A. V. Rusakov, and B. V. Adamovich, Biophysics (Moscow) 62, 92 (2017).

    Article  Google Scholar 

  8. S. Ellner and P. Turchin, Am. Nat. 145, 343 (1995).

    Article  Google Scholar 

  9. A. B. Medvinsky, B. V. Adamovich, R. R. Aliev, et al., Ecol. Complex. 32, 90 (2017).

    Article  Google Scholar 

  10. J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Europhys. Lett. 4, 973 (1987).

    Article  ADS  Google Scholar 

  11. N. Marwan, Eur. Phys. J. Special Topics 164, 3 (2008).

    Article  ADS  Google Scholar 

  12. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep. 438, 237 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Kot, Elements of Mathematical Ecology (Cambridge Univ. Press, Cambridge, 2001).

    Book  MATH  Google Scholar 

  14. R. M. May, Nature 261, 459 (1976).

    Article  ADS  Google Scholar 

  15. A. B. Medvinsky, B. V. Adamovich, A. Chakraborty, et al., Ecol. Complex. 23, 61 (2015).

    Article  Google Scholar 

  16. J. Theiler, Phys. Rev. A 34, 2427 (1986).

    Article  ADS  Google Scholar 

  17. C. Elton, Voles, Mice and Lemmings: Problems in Population Dynamics (Oxford Univ. Press, Oxford, 1942).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 17-04-00048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rusakov.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusakov, A.V., Medvinsky, A.V. & Nurieva, N.I. Analysis of the Recurrence of Noisy Time Series. BIOPHYSICS 63, 590–595 (2018). https://doi.org/10.1134/S0006350918040139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040139

Navigation