Skip to main content
Log in

Generation of Active Carboxyl Groups on the Surface of a Polyethylene Terephthalate Film and Their Quantitation by Digital Fluorescence Microscopy

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A method to estimate the concentration of chemically accessible carboxylic groups on the surface of a polyethylene terephthalate (PET) film was developed using the fluorochrome cycanine Cy5 and digital fluorescence microscopy. A method was developed to activate the carboxylic groups on the PET surface and to allow covalent immobilization of amino group-containing molecular constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. F. Clarke and J. R. Foster, Br. J. Biomed. Sci. 69 (2), 83 (2012).

    Article  Google Scholar 

  2. C. Gnoth and S. Johnson, Geburtshilfe Frauenheilkd 74 (7), 661 (2014).

    Article  Google Scholar 

  3. X. Mao, W. Wang, and T. Du, Sens. Actuators B: Chem. 186, 315 (2013).

    Article  Google Scholar 

  4. D. Gryadunov, E. Dementieva, V. Mikhailovich, et al., Expert Rev. Mol. Diagn. 11 (8), 839 (2011).

    Article  Google Scholar 

  5. M. B. Miller and Y. W. Tang, Clin. Microbiol. Rev. 22, 611 (2009).

    Article  Google Scholar 

  6. H. Zhu and J. Qian, Adv. Genet. 79, 123 (2012).

    Google Scholar 

  7. D. Rother, T. Sen, D. East, and I. J. Bruce, Nanomedicine 6 (2), 281 (2011).

    Article  Google Scholar 

  8. A. Akkoyn and U. Bilitewskin, Biosens. Bioelectron. 17, 655 (2002).

    Article  Google Scholar 

  9. C. Cai, Q. Shi, L. Li, et al., Radiat. Phys. Chem. 77, 370 (2008).

    Article  ADS  Google Scholar 

  10. N. Sarkar, S. Bhattacharjee, and S. Sivaram, Langmuir 13, 4142 (1997).

    Article  Google Scholar 

  11. R. Silva, E. C. Muniz, and A. F. Rubira, Appl. Surf. Sci. 255, 6345 (2009).

    Article  ADS  Google Scholar 

  12. S. Dimitrievska, M. Maire, G. A. Diaz-Quijada, et al., Macromol. Biosci. 11, 493 (2011).

    Article  Google Scholar 

  13. J. Wang, D. Feng, H. Wang, et al., J. Appl. Polym. Sci. 50, 585 (1993).

    Article  Google Scholar 

  14. M. Strobel, C. S. Lyons, J. M. Strobel, et al., Sci. Technol. 6, 429 (1992).

    Google Scholar 

  15. P. Bertrand, Y. DePuydt, J. M. Beuken, et al., Nucl. Instrum. Methods Phys. Res. B 19–20, 887 (1987).

    Article  Google Scholar 

  16. E. Arenolz, J. Heitz, M. Wagner, et al., Appl. Surf. Sci. 69, 16 (1993).

    Article  ADS  Google Scholar 

  17. M. Abdolahifard, S. HajirBahrami, and R. M. A. Ma-lek, ISRN Org. Chem. Article ID 265415 (2011).

  18. J. Dave, R. Kumar, and H. C. Srivastava, J. Appl. Polym. Sci. 33, 455 (1987).

    Article  Google Scholar 

  19. L. N. Bui, M. Thompson, N. B. McKeown, et al., Analyst 118, 463 (1993).

    Article  ADS  Google Scholar 

  20. W. Chen and T. J. McCarthy, Macromolecules 31, 3648 (1998).

    Article  ADS  Google Scholar 

  21. N. P. Desai and J. A. Hubbell, Macromolecules 25, 226 (1991).

    Article  ADS  Google Scholar 

  22. P. Kingshott, J. Wei, D. Bagge-Ravn, et al., Langmuir, 19, 6912 (2003).

    Article  Google Scholar 

  23. J. Hyun, Y. Zhu, A. L. Vinson, et al., Langmuir 17, 6358 (2001).

    Article  Google Scholar 

  24. L. Hu, A. Oku, E. Yamada, and K. Tomari, Polymer J. 29 (9), 708 (1997).

    Article  Google Scholar 

  25. F. Liu, J. Chen, Z. Li, et al., J. Anal. Appl. Pyrolysis 99, 16 (2013).

    Article  Google Scholar 

  26. S. Sano, K. Kato, and Y. Ikada, Biomaterials 14 (11), 817 (1993).

    Article  Google Scholar 

  27. P. Golshaei and O. Guven, React. Funct. Polym. 118, 26 (2017).

    Article  Google Scholar 

  28. Y. Liu, T. He, and C. Gao, Colloids Surf. B: Biointerfaces 46, 117 (2005)

    Article  Google Scholar 

  29. J. Marchand-Brunaert, M. Deldime, I. Dupont, et al., J. Colloid Interface Sci. 173 (1), 236 (1995).

    Article  ADS  Google Scholar 

  30. I. Donelli, P. Taddei, P. F. Smet, et al., Biotechnol. Bioeng. 103 (5), 845 (2009).

    Article  Google Scholar 

  31. J. Li, Y. Maekawa, T. Yamaki, and M. Yoshida, Macromol. Chem. Phys. 203, 2470 (2002).

    Article  Google Scholar 

  32. A. M. Belu, Z. Yang, R. Aslami, and A. Chilkoti, Anal. Chem. 73, 143 (2001).

    Article  Google Scholar 

  33. Y. Lysov, V. Barsky, D. Urasov, et al., Biomed. Optics Express 8 (11), 4798 (2017).

    Article  Google Scholar 

  34. V. Barsky, A. Perov, S. Tokalov, et al., J. Biomol. Screening 7 (3), 247 (2002).

    Article  Google Scholar 

  35. M. A. Spitsyn, V. E. Kuznetsova, V. E. Shershov, et al., Dyes Pigments 147, 199 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to R.A. Yurasov for help using the software program.

This work was supported by the Program for Basic Research at the State Academies of Sciences from 2013 to 2020 (project no. 01201363819, Development of New Methods for Molecular Diagnosis of Human and Animal Disorders).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chudinov.

Additional information

Translated by T. Tkacheva

Abbreviations: PCR, polymerase chain reaction; PET, polyethylene terephthalate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miftakhov, R.A., Lapa, S.A., Shershov, V.E. et al. Generation of Active Carboxyl Groups on the Surface of a Polyethylene Terephthalate Film and Their Quantitation by Digital Fluorescence Microscopy. BIOPHYSICS 63, 512–518 (2018). https://doi.org/10.1134/S0006350918040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040127

Keywords:

Navigation