Skip to main content
Log in

The Kinetics of Thermal Denaturation of Acetylcholinesterase of the Rat Red Blood Cell Membrane during Moderate Hypothermia

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The thermostability of acetylcholinesterase of rat erythrocyte membranes in the norm and moderate hypothermia was studied. It is shown that the kinetics of the thermal denaturation of acetylcholinesterase is nonlinear and corresponds to a model that involves two-step denaturation, fast and slow, of the enzyme’s native form. The rate constants of the fast phase, k1, are much higher than those of the slow phase, k2, while the energy of the fast phase activation is lower by only 19.4% compared to that of the slow one. Short-term moderate hypothermia is shown to increase k1 and decrease the index of relative activity of the intermediate form of acetylcholinesterase (parameter β), leading to significant lowering of the activation energies of both stages; parameter β becomes more temperature dependent. The prolongation of hypothermia up to 3 h mainly contributes to a decrease in k1 and k2 relative to short-term hypothermia and the activation energy of denaturation increases. These data support the hypothesis according to which the structure of acetylcholinesterase is labilized at the initial stages of the development of the hypothermic state and stabilized during prolonged hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. Hochachka and G. Somero, Biochemical Adaptation (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  2. P. A. Fields, Y. S. Kim, J. F. Carpenter, et al., J. Exp. Biol. 205, 1293 (2002).

    Google Scholar 

  3. N. D. Ozernyuk, Temperature Adaptations (Moscow State Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  4. O. V. Lipina and V. I. Lugovoi, Biofizika 41 (3), 678 (1996).

    Google Scholar 

  5. W. Z. Martini, Metab. Clinic. Exp. 56, 214 (2007).

    Article  Google Scholar 

  6. D. Blagojević, In Systems Biology of Free Radicals and Antioxidants, Ed. by I. Laher (Springer, Berlin, 2014), pp. 376–392.

    Google Scholar 

  7. E. Z. Emirbekov and N. K. Klichkhanov, Free Radical Processes and the State of Membranes during Hypothermia (Southern Federal Univ., Rostov-on-Don, 2011) [in Russian].

    Google Scholar 

  8. N. Alva, J. Palomeque, and C. Teresa, Oxid. Med. Cell. Longev. Article ID 957054 (2013). http://dx.doi.org/. doi 10.1155/2013/957054

  9. M. A. M. Al-Rabii, M. D. Astaeva, and N. K. Klich-khanov, Estestv. Nauki 50 (1), 35 (2015).

    Google Scholar 

  10. F. A. Carvalho, J. P. Lopes de Almeida, T. Freitas-Santos, et al., J. Membrane Biol. 228, 89 (2009).

    Article  Google Scholar 

  11. N. K. Klichkhanov, A. M. Dzhafarova, and M. A. M. Al-Rabii, Biochemistry (Moscow), Suppl. Series A: Membrane and Cell Biol. 11 (4), 275 (2017).

  12. A. E. Lyubarev and B. I. Kurganiv, Usp. Biol. Khim. 40, 43 (2000).

    Google Scholar 

  13. I. N. Dodge, C. Mitchell, D. Hanahan, Arch. Biochem. Biophis. 100 (1), 119 (1963).

    Article  Google Scholar 

  14. D. H. Lowry, H. J. Rosebrough, A. L. Farr, et al., J. Biol. Chem. 193 (1), 265 (1951).

    Google Scholar 

  15. Y. L. Ellman, K. D. Courtney, V. J. Andres, et al., Biochem. Pharmacol. 7 (1), 88 (1961).

    Article  Google Scholar 

  16. M. Kh. Tikra, A. M. Dzhafarova, N. K. Klichkhanov, et al., Vestn. Dagestan. Gos. Univ., No. 1, 107 (2011).

  17. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, San Francisco, 1980; Mir, Moscow, 1984).

  18. W. K. W. Luk, V. P. Chen, R. C. Y. Choi, et al., FEBS J. 279, 3229 (2012).

    Article  Google Scholar 

  19. J. Massoulié, N. Perrier, H. Noureddine, et al., Chem. Biol. Interact. 175, 30 (2008).

  20. O. I. Maloletkina, K. A. Markossian, L. V. Belousova, et al., Biophys. Chem. 148 (1–3), 121 (2010).

    Article  Google Scholar 

  21. I. Shin, D. Kreimer, I. Silman, et al., Proc. Natl. Acad. Sci. U. S. A. 94 (10), 2848 (1997).

    Article  ADS  Google Scholar 

  22. C. B. Millard, V. L. Shnyrov, S. Newstead, et al., Protein Sci. 12 (10), 2337 (2003).

    Article  Google Scholar 

  23. B. Perrin, M. Rowland, M. Wolfe et al., Invert. Neurosci. 8, 147 (2008).

    Article  Google Scholar 

  24. Y. Bourne, J. Grassi, P. E. Bougis, et al., J. Biol. Chem. 274, 30370 (1999).

    Article  Google Scholar 

  25. A. A. Gorfe, B. Lu, Z. Yu, et al., Biophys. J. 97, 897 (2009).

    Article  ADS  Google Scholar 

  26. J. A. Edwards and S. Brimijoin, Biochem. Biophys. Acta 742 (3), 509 (1983).

    Google Scholar 

  27. V. Levi, J. Rossi, P. Catello, et al., Biophys. J. 82, 437 (2002).

    Article  Google Scholar 

  28. M. Zimmermann, Br. J. Pharmacol. 170, 953 (2013).

    Article  Google Scholar 

  29. M. G. Paulick and C. R. Bertozzi, Biochemistry 47, 6991 (2008).

    Article  Google Scholar 

  30. E. Milkani, A. M. Khaing, F. Huang, et al., Langmuir 26 (24), 18884 (2010).

    Article  Google Scholar 

  31. Z. Arsov, M. Schara, M. Zorko, et al., Eur. Biophys. J. 33, 715 (2004).

    Article  Google Scholar 

  32. S. Tsakiris, Z. Naturforsch. C. 40, 97 (1985).

    Article  Google Scholar 

  33. A. M. Kalandarov, B. A. Faizullaev, S. A. Zabelinskii, et al., in Current Problems in Biology, Nanotechnologies, and Medicine, Ed. by T. P. Shkurat and A. E. Panich (Southern Federal Univ., Rostov-on-Don, 2008), pp. 27–28 [in Russian].

    Google Scholar 

  34. M. A. M. Al-Rabii, Phd thesis in Biology (Dagestan. Gos. Univ., Makhachkala, 2016).

  35. M. Grifman, A. Arbel, D. Ginzberg, et al., Molec. Brain Res. 51, 179 (1997).

    Article  Google Scholar 

  36. G. Yalak and V. Vogel, Sci. Signaling 5 (255), 5 (255), doi: 10.1126/scisignal.2003273 37 (2012)

  37. S. Tsakiris, P. Angelogianni, K. H. Schulpis, at al., Clin. Biochem. 33, 103 (2000).

    Article  Google Scholar 

  38. K. U. Schallreuter, S. M. A. Elwary, N. C. J. Gibbons, et al., Biochem. Biophys. Res. Comm. 315, 502 (2004).

    Article  Google Scholar 

  39. E. M. Molochkina, O. M. Zorina, L. D. Fatkullina, et al., Chem.-Biol. Interact. 157–158, 401 (2005).

    Article  Google Scholar 

  40. A. Garcimartin, M. E. López-Oliva, M. P. González, et al., Redox Biol. 12, 719 (2017).

    Article  Google Scholar 

  41. L. Weiner, D. Kreimer, E. Roth, et al., Biochem. Biophys. Res. Commun. 198 (3), 915 (1994).

    Article  Google Scholar 

  42. M. A. M. Al-Rabii, Sh. I. Chalabov, M. D. Astaeva, and N. K. Klichkhanov, Sovrem. Probl. Nauki Obraz., No. 3, 2015. http://www.science-education.ru/123-17364.

  43. R. Jha and S. I. Rizvi, Biomed. Pap. Med. Fac. Univ. Palacky, Olomouc, Czech Repub. 153 (3), 195 (2009).

    Article  Google Scholar 

  44. I. Fremaux, S. Mazères, A. Brisson-Lougarre, et al., BMC Biochem. 3, 21 (2002). http://www.biomedcentral.com/1471-2091/3/21.

  45. E. Z. Emirbekov, A. A. Sfiev, and N. K. Klichkhanov, Probl. Kriobiol. 4, 31 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dzhafarova.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klichkhanov, N.K., Dzhafarova, A.M. The Kinetics of Thermal Denaturation of Acetylcholinesterase of the Rat Red Blood Cell Membrane during Moderate Hypothermia. BIOPHYSICS 63, 526–536 (2018). https://doi.org/10.1134/S0006350918040103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040103

Keywords:

Navigation