Skip to main content
Log in

The Influence of Nanoparticles of Biogenic Ferrihydrite on the Rooting of Lignified Cuttings of the Ledebour Willow

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The influence of nanoparticles of biogenic ferrihydrite on the root formation of lignified cuttings of the Ledebour willow (Salix ledebouriana Trautv.) was investigated. The rooting of stem cuttings was performed in water using a phytohormone (indoyl-3-acetic acid) and nanoparticles. In comparison with the variants of incubation of cuttings in water and in a solution containing indolyl-3-acetic acid, the number and total length of the adventitious roots after 5 and 15 days of rooting were greatest in the cuttings treated with nanoparticles. In the early period of root development, increased levels of free radicals and intensities of the hyperfine structure lines of Mn2+ cleavage were recorded in the EPR spectra of plant tissues (lenticels of cuttings of treated with nanoparticles). The latter is related to the activity of manganese-containing superoxide dismutase. The response of cuttings to the treatment with nanoparticles was recorded by EPR before manifestation of adventitious root primordium initiation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. Remédious, F. Rosário, and V. Bastos, J. Bot., Article ID 751686 (2012).

  2. B. Ruttkay-Nedecky, O. Krystofova, L. Nejdl, and V. Adam, J. Nanobiotechnol. 15 (33), (2017).

  3. A. M. Korotkova, S. V. Lebedev, F. G. Kayumov, and E. A. Sizova, S-kh. Biol. 52 (1), 182 (2017).

    Google Scholar 

  4. V. M. Yurin and O. V. Molchan, Tr. Belarus. Gos. Univ. 10 (1), 9 (2015).

    Google Scholar 

  5. P. P. Fu, Q. S. Xia, H. M. Hwang, et al., J. Food Drug. Anal. 22, 64 (2014).

    Article  Google Scholar 

  6. Yu. N. Vodyanitskii, Iron Compounds and Their Role in Soil Conservation Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  7. R. M. Cornell and U. Schwertmann, The Iron Oxides (Wiley, Weinheim, 2003).

    Book  Google Scholar 

  8. K. Eusterhues, T. Rennert, H. Knicker, et al., Environ. Sci. Technol. 45 (2), 527 (2011).

    Article  ADS  Google Scholar 

  9. A. Violante and A. G. Caporale, J. Soil Sci. Plant Nutr. 15 (2), 422 (2015).

    Google Scholar 

  10. C. W. Childs and Z. Pflanz. Bodenkunde 155 (5), 441 (1992).

    Article  Google Scholar 

  11. C. M. Jonsson, P. Persson, S. Sjöberg, and J. S. Loring, Environ. Sci. Technol. 42 (7), 2464 (2008).

    Article  ADS  Google Scholar 

  12. E. Čadková, M. Komárek, R. Kaliszová, et al., Environ. Sci. Pollut. Res. Int. 20 (6), 4205 (2013).

  13. T. Xia, M. Kovochich, J. Brant, et al., Nano Lett. 6 (8), 1794 (2006).

    Article  ADS  Google Scholar 

  14. K. Jeyasubramanian, U. U. G. Thoppey, G. S. Hikku, et al., RSC Adv. 6, 15451 (2016).

    Article  Google Scholar 

  15. D. V. Kolbanov, E. O. Legerova, I. I. Donskaya, et al., in Biotechnological Approaches to Palnt Biodiversity Conservation and Selection: Proc. Int. Conf. (Monsk, 2014), pp. 114–117 [in Russian].

  16. J. Dat, S. Vandenabeele, E. Vranová, et al., Cell. Mol. Life Sci. 57, 779 (2000).

    Article  Google Scholar 

  17. T. P. Astafurova, Yu. N. Morgalev, A. P. Zotikova, et al., Vestn. Tomsk. Gos. Univ., Ser. Biol. 1 (13), 122 (2011).

    Google Scholar 

  18. X. J. Xia, Y. H. Zhou, K. Shi, et al., J. Exp. Bot. 66 (10), 2839 (2015).

    Article  Google Scholar 

  19. B. Wang, J.-J. Yin, X. Zhou, et al., J. Phys. Chem. C 117 (1), 383 (2013).

    Article  Google Scholar 

  20. V. D. Kreslavski, D. A. Los, S. I. Allakhverdiev, and Vl. V. Kuznetsov, Russ. J. Plant Physiol. 59 (2) 141, (2012).

    Article  Google Scholar 

  21. Yu. A. Labas, A. V. Gordeeva, Yu. I. Deryabina, et al., Usp. Sovrem. Biol. 130 (4), 323 (2010).

    Google Scholar 

  22. S. Choudhury, P. Panda, L. Sahoo, and S. K. Panda, Plant Signal Behav. 8 (4), 751686 (2013).

    Google Scholar 

  23. S. Mangano, S. P. D. Juárez, and J. M. Estevez, Plant Physiol. 171, 1593 (2016).

    Article  Google Scholar 

  24. M. T. Tarasenko, Plant Propagation by Green Grafts (Kolos, Moscow, 1967) [in Russian].

    Google Scholar 

  25. V. N. Maksimov, Multifactor Experiment in Biology (Moscow State Univ., Moscow,1980) [in Russian].

    Google Scholar 

  26. V. F. Moiseychenko, Methodology of Experimentation in Pomiculture and Horticulture (Vishcha Shkola, Kiev, 1988) [in Russian].

    Google Scholar 

  27. M. I. Teremova, E. A. Petrakovskaya, A. S. Romanchenko, et al., Environ. Progr. Sustain. Energy 35 (5), 1407 (2016).

    Article  Google Scholar 

  28. Yu. L. Gurevich, S. V. Markov, Yu. I. Man’kov, et al., in Ultrafine Powders, Nanostructures, and Materials: Proceedings of Scientific-Technical Conf. with International Participation (Krasnoyarsk, 2015), pp. 98–101 [in Russian].

  29. A. R. S. Gomes and T. T. Kozlowski, Plant Physiol. 66, 267 (1980).

    Article  Google Scholar 

  30. K. Haase, O. D. E. Simone, J. J. Wolfgang, and S. Wolfgang, Tree Physiol. 23, 1069 (2003).

    Article  Google Scholar 

  31. Y. A. Kuzovkina, M. Knee, and M. F. Quigley, J. Environ. Hort. 22 (3), 155 (2004).

    Google Scholar 

  32. M. J. Bennett, C. Perilleux, T. Beeckman, and X. Draye, Development 143, 3328 (2016).

    Article  Google Scholar 

  33. G. Gapper and L. Dolan, Plant Physiol. 141, 341 (2006).

    Article  Google Scholar 

  34. D. I. Shevelev, S. V. Khizhnyak, Yu. L. Gurevich, and M. I. Teremova, Usp. Sovrem. Nauk 5 (2), 57 (2017).

    Google Scholar 

  35. V. G. Pakhomova, K. V. Shadrin, G. V. Makarskaya, et al., Zdorov’e Med. Ekol. Nauka 70 (3), 136 (2017).

    Google Scholar 

  36. A.-F. Miller, FEBS Lett. 586 (5), 585 (2012).

    Article  Google Scholar 

  37. M. Filek, M. Łabanowska, M. Kurdziel, and A. Sieprawska, Toxins 9 (6), 178 (2017).

    Article  Google Scholar 

  38. M. M. Najafpour, M. Z. Ghobadi, B. Haghighi, et al., Biochemistry (Moscow) 79 (4), 324 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk krai, and the Krasnoyarsk regional foundation for support of scientific and technical activities under the research project no. 16-48-242158.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Bopp or Yu. L. Gurevich.

Additional information

Translated by M. Batrukova

1Abbreviations: ROS, reactive oxygen species; IAA, indolyl-3-acetic acid; FFE, full factorial experiment; EPR, electron paramagnetic resonance; EMR, electron magnetic resonance; Mn-SOD, manganese-containing superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bopp, V.L., Mistratova, N.A., Petrakovskaya, E.A. et al. The Influence of Nanoparticles of Biogenic Ferrihydrite on the Rooting of Lignified Cuttings of the Ledebour Willow. BIOPHYSICS 63, 621–628 (2018). https://doi.org/10.1134/S0006350918040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918040036

Keywords

Navigation