Skip to main content
Log in

An Experimental Study of the Pharmacokinetics of the Antitumor Drug Aurumacryl

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The distribution of the antitumor drug aurumacryl (intraperitoneally injected at a dose of 100 mg/kg) in the bodies of animals with Lewis lung carcinoma was studied. The determination of aurumacryl in the tumors and organs (blood, liver, kidneys, lungs, spleen, and brain) of mice was carried out for 48 h by measuring the gold content in the test tissues using inductively coupled plasma mass spectrometry. We found the preferential accumulation of the drug in the kidneys with an extremely low gold content in the brain and a relatively uniform distribution of aurumacryl between the tumor, liver, lung, and spleen tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ICP-MS:

inductively coupled plasma mass spectrometry

RB:

relative bioavailability

References

  1. D. B. Korman, Fundamentals of Antitumor Chemotherapy (Prakticheskaya Meditsina, Moscow, 2006) [in Russian].

    Google Scholar 

  2. V. N. Babin, Yu. A. Belousov, V. I. Borisov, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2405 (2014).

    Google Scholar 

  3. I. A. Efimenko, Koordnats. Khim. 24 (4), 282 (1998).

    Google Scholar 

  4. M. Frezza, S. Hindo, D. Chen, et al., Curr. Pharmacol. Des. 16, 1813 (2010).

    Article  Google Scholar 

  5. C. Nardon, F. Chiara, L. Brustolin, et al., Chem. Open 4, 183 (2015).

    Google Scholar 

  6. C. Nardon, N. Pettenuzzo, and D. Fregona, Curr. Med. Chem. 23, 3374 (2016).

    Article  Google Scholar 

  7. L. Ronconi and D. Fregona, Dalton Trans. 48, 10670 (2009).

    Article  Google Scholar 

  8. X. Chen, X. Shi, X. Wang, and J. Liu, Cancer Cell Microenviron. 1, 415, (2014).

    Google Scholar 

  9. D. Oomen and D. Yiannakis, Mutat. Res. 784–785, 8 (2015).

    Google Scholar 

  10. D. Saggioro, M.P. Rigobello, L. Paloschi, et al., Chem. Biol. 14, 1128 (2007).

    Article  Google Scholar 

  11. S. Nobili, E. Mini, I. Landini, et al., Med. Res. Rev. 30, 550 (2010).

    Google Scholar 

  12. A. Markowska, B. Kasprzak, K. Jaszczynska-Nowinka, et al., Contemp. Oncol. (Poznan) 19, 271 (2015).

    Google Scholar 

  13. A. Casini and L. Messory, Curr. Top. Med. Chem. 11, 2647 (2011).

    Article  Google Scholar 

  14. I. Kostova, Anticancer Agents Med. Chem. 6, 19 (2006).

    Article  Google Scholar 

  15. E. Topkas, N. Gai, A. Cumming, et al., Oncotarget 7, 831 (2016).

    Article  Google Scholar 

  16. V. Gandin, A. P. Ferhanes, and M. P. Rigobello, Biochem. Pharmacol. 79, 90 (2010).

    Article  Google Scholar 

  17. L. Cattaruza, D. Fregona, M. Mongiat, et al. Int. J. Cancer 128, 202 (2011).

    Article  Google Scholar 

  18. G. Marzano, V. Gandin, A. Fold, et al. Free Radic. Biol. Med. 42, 872 (2007).

    Article  Google Scholar 

  19. M. G. Voronkov, K. A. Abzaeva, L. V. Zhilitskaya, et al., RF Patent No. 2372091 (May 20, 2008).

    Google Scholar 

  20. L. A. Ostrovskaya, M. G. Voronkov, D. B. Korman, et al., J. Cancer Ther. 1 (2), 59 (2010).

    Article  Google Scholar 

  21. L. A. Ostrovskaya, D. B. Korman, N.V. Bluhterova, et al., Biointerface Res. Appl. Chem. 4 (4), 816 (2014).

    Google Scholar 

  22. L. A. Ostrovskaya, M. G. Voronkov, D. B. Korman, et al., Biophysics (Mosow) 59 (4), 642 (2014).

    Article  Google Scholar 

  23. L. A. Ostrovskaya, A. K. Grehova, D. B. Korman, et al., Biophysics (Mosow) 62 (3), 485 (2017).

    Article  Google Scholar 

  24. L. A. Ostrovskaya, D. B. Korman, A. K. Grehova, et al., Izv. Akad. Nauk, Ser. Khim., No. 12, 2333 (2017).

    Google Scholar 

  25. T. Suzuki, K. Sarai, K. Kohda, and Y. Kawazoe, Anticancer Res. 11 (2), 953 (1991).

    Google Scholar 

  26. N. A. Plate and E. A. Vasil’ev, Physiologically Active Polymers (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  27. E. M. Treshchalina, O. S. Zhukova, G. K. Gerasimova, et al., Guidelines for Experimental (Preclinical) Study of New Pharmacological Substances, Ed. by R. U. Khabriev (Meditsina, Moscow, 2005) [in Russian].

  28. V. K. Karandashev, T. A. Orlova, A. E. Lezhnev, et al., Inorg. Mater. 44 (14), 1491 (2008).

    Article  Google Scholar 

  29. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

    Book  MATH  Google Scholar 

  30. L. A. Ostrovskaya, V. A. Filov, B. A. Ivin, et al., Ross. Bioterapevt. Zh. 3 (1), 37 (2004).

    Google Scholar 

  31. E. V. Caparelli, R. Bricker-Ford, M. J. Rogers, et al. Antimicrob. Agents Chemother. 61 (1), e01947-16. (2017). doi doi 10.1128/AAC-01947-16

    Google Scholar 

  32. K. A. Abzaeva, L. V. Zhilitskaya, G. G. Belozerskaya, and L. A. Ostrovskaya, Izv. Akad. Nauk, Ser. Khim., No. 12, 2314 (2017).

    Google Scholar 

  33. Y. Liu, Y. Li, S. Yu, and G. Zhao, Curr. Drug Targets, 13, 1432 (2012).

    Article  Google Scholar 

  34. S. M. Meier, C. Gerner, B. K. Keppler, et al., Inorg. Chem. 255, 4248 (2016).

    Article  Google Scholar 

  35. X. Zhang, M. Frezza, V. Milacic, et al., J. Cell Biochem. 109, 162 (2010).

    Article  Google Scholar 

  36. T. Zou, C. T. Lum, C. N. Loc, et al., Chem. Soc. Rev. 44, 8786 (2015).

    Article  Google Scholar 

  37. S. Perez, C. deHaro, Vicente C., et al., ACS Chem. Biol. (2017). doi 10.1021/acschembio7600090

    Google Scholar 

  38. A. Casini, G. Kelter, C. Gabbiani, et al., J. Biol. Inorg. Chem. 14, 1139 (2009).

    Article  Google Scholar 

  39. C. Gabbiani, A. Casini, G. Ketler, et al., Metallomics 3, 1318 (2011).

    Article  Google Scholar 

  40. M. Celegato, D. Fregona, M. Mongiat, et al., Future Med. Chem. 6, 1249 (2014).

    Article  Google Scholar 

  41. C. Nardon, G. Boscutti, and D. Fregona, Anticancer Res. 14, 487 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Ostrovskaya.

Additional information

Original Russian Text © L.A. Ostrovskaya, D.B. Korman, J.P. Burmiy, V.A. Kuzmin, N.V. Bluhterova, M.M. Fomina, V.A. Rikova, R.R. Guliev, K.A. Abzaeva, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 606–614.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovskaya, L.A., Korman, D.B., Burmiy, J.P. et al. An Experimental Study of the Pharmacokinetics of the Antitumor Drug Aurumacryl. BIOPHYSICS 63, 469–476 (2018). https://doi.org/10.1134/S0006350918030181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030181

Keywords

Navigation