Skip to main content
Log in

Modeling of Granule Secretion upon Platelet Activation through the TLR4-Receptor

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper presents the mathematical modeling of the possibility of blood platelets activation by lipopolysaccharides, which are components of the cell wall of gram-negative bacteria, through the toll-like receptor TLR4. We have developed both complete and reduced models of the platelet signaling cascade triggered by TLR4 considering the known kinetics of intracellular signaling enzymes and the contents of the proteins that participate in the TLR4 signaling cascade in human platelets. The results of our simulation show that the concentration of the soluble CD14 protein, which is necessary for the activation of platelets by lipopolysaccharides via TLR4, is insufficient for platelet activation in the blood of healthy donors. Thus, our results suggest that blood platelets can be activated by lipopolysaccharides through TLR4 only in cases of strong activation of the immune system accompanied by an increase in CD14 concentration in the blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LPS:

lipopolysaccharide(s)

TLR:

toll-like receptor

LBP:

LPS-binding protein (the plasma protein that binds LPS and delivers it to the CD14 protein)

References

  1. A. D. Michelson, Platelets (Elsevier, 2013).

    Google Scholar 

  2. G. Zhang, J. Han, E. J. Welchet, et al., J. Immunol. 182 (12), 7997 (2009).

    Article  Google Scholar 

  3. G. Andonegui, S. M. Kerfoot, K. McNagny, et al., Blood 106 (7), 2417 (2005).

    Article  Google Scholar 

  4. V. Matus, J. G. Valenzuela, P. Hidalgo, et al., PLoS One 4, 1 (2017).

    Google Scholar 

  5. A. L. Ståhl, M. Svensson, M. Mörgelin, et al., Blood 108 (1), 167 (2006).

    Article  Google Scholar 

  6. N. E. Gomes, M. K. C. Brunialti, M. E. Mendes, et al., Braz. J. Med. Biol. Res. 43, 853 (2010).

    Article  Google Scholar 

  7. S. Akira and K. Takeda, Nat. Rev. Immunol. 4, 499 (2004).

    Article  Google Scholar 

  8. G. Andonegui, S. M. Kerfoot, K. McNagny, et al., Blood 106, 2417 (2005).

    Article  Google Scholar 

  9. E. Ampofo, I. Müller, I. N. Dahmke, et al., Thromb. Res. 136, 996 (2015).

    Article  Google Scholar 

  10. R. Aslam, E. R. Speck, M. Kim, et al., Blood 107, 637 (2006). doi 10.1182/blood-2005-06-2202

    Article  Google Scholar 

  11. G. C. Sharp, H. Ma, P. T. K. Saunders, and J. E. Norman, PLoS One 8 (7), e70180 (2013).

    Google Scholar 

  12. F. Rendu and B. Brohard-Bohn, Platelets 12, 261 (2001).

    Article  Google Scholar 

  13. M. H. Fukami, J. S. Bauer, G. J. Stewart, and L. Salganicoff, J. Cell Biol. 77, 389 (1978).

    Article  Google Scholar 

  14. S. Vogel, R. Bodenstein, Q. Chen, et al., J. Clin. Invest. 125 (12), 4638 (2015).

    Article  Google Scholar 

  15. X. Yang, H. Wang, M. Zhang, et al., Diagn. Pathol. 10, 134 (2015).

    Article  Google Scholar 

  16. L. Petzold and A. Hindmarsh, LSODA: Livermore Solver of Ordinary Differential Equations (Lawrence Livermore National Laboratory, Livermore, CA, 1997).

    Google Scholar 

  17. A. C. Hindmarsh, ACM Signum Newsl. 15, 10 (1980).

    Article  Google Scholar 

  18. P. Mendes, S. Hoops, S. Sahle, et al., Methods Mol. Biol. 500, 17 (2009).

    Article  Google Scholar 

  19. D. B. Fogel, L. J. Fogel, W. Atmar, and G. B. Fogel, in Proceedings of tha First Annual Conference on Evolutionary Programming (1992), p. 175.

    MATH  Google Scholar 

  20. J. Berthet, P. Damien, H. Hamzeh-Cognasse, et al., Br. J. Haematol. 151 (1), 89 (2010).

    Article  Google Scholar 

  21. B. S. Park, D. H. Song, H. M. Kim, et al., Nature 458, 1191 (2009).

    Article  ADS  Google Scholar 

  22. H. J. Shin, H. Lee, J. D. Park, et al., Mol. Cells 24 (1), 119 (2007).

    Google Scholar 

  23. L. A. Ryan, J. Zheng, M. Brester, et al., J. Infect. Dis. 184 (6), 699 (2017).

    Article  Google Scholar 

  24. E. Hailman, T. Vasselon, M. Kelley, et al., J. Immunol. 156, 4384 (1996).

    Google Scholar 

  25. T. Kusunoki, S. D. Wright, Y. Inoue, and T. Miyanomae, Allergol. Int. 47, 271 (1998).

    Article  Google Scholar 

  26. P. G. Motshwene, M. C. Moncrieffe, J. G. Grossmann, et al., J. Biol. Chem. 284, 25404 (2009).

    Article  Google Scholar 

  27. S.-C. Lin, Y.-C. Lo, and H. Wu, Nature 465, 885 (2010).

    Article  ADS  Google Scholar 

  28. H. Wu and J. R. Arron, BioEssays 25, 109605 (2003).

    Article  Google Scholar 

  29. C. W. Philipson, J. Bassaganya-Riera, M. Viladomiu, et al., PLoS One 10, e0137839 (2015).

    Google Scholar 

  30. L. Deng, Ch. Wang, E. Spencer, et al., Cell 103, 351 (2000).

    Article  Google Scholar 

  31. J. Napetschnig and H. Wu, Annu. Rev. Biophys. 42, 443 (2013).

    Article  Google Scholar 

  32. Z. A. Karim, J. Zhang, M. Banerjee, et al., Blood 121 (22), 4567 (2016).

    Article  Google Scholar 

  33. R. D. Moriarty, A. Cox, M. McCall, et al., J. Thromb. Haemost. 14, 797 (2016).

    Article  Google Scholar 

  34. C. N. Watson, S. W. Kerrigan, D. Cox, et al., Platelets 7104, 1 (2016).

    Google Scholar 

  35. J. M. Burkhart, M. Vaudel, S. Gambaryan, et al., Blood 120, e73 (2012).

    Google Scholar 

  36. J. Pugin, C. C. Schürer-Maly, D. Leturcq, et al., Proc. Natl. Acad. Sci. U. S. A. 90 (7), 2744 (1993).

    Article  ADS  Google Scholar 

  37. D. R. Alexander, J. M. Hexham, and M. J. Crumpton, Biochem. J. 256, 885 (1988).

    Article  Google Scholar 

  38. K. C. Yeung, D. W. Rose, A. S. Dhillon, et al., Mol. Cell. Biol. 21 (21), 7207 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Nechipurenko.

Additional information

Original Russian Text © A.S. Maiorov, T.O. Shepelyuk, F.A. Balabin, A.A. Martyanov, D.Y. Nechipurenko, A.N. Sveshnikova, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 475–483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, A.S., Shepelyuk, T.O., Balabin, F.A. et al. Modeling of Granule Secretion upon Platelet Activation through the TLR4-Receptor. BIOPHYSICS 63, 357–364 (2018). https://doi.org/10.1134/S0006350918030144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030144

Keywords

Navigation