Skip to main content
Log in

A Model of Temporal Encoding of Stimulus Orientation by Neuronal Responses in the Primary Visual Cortex

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been shown experimentally that the stimulus orientation that elicits the optimal response in an orientation column in the primary visual cortex (area V1) undergoes rapid systemic changes that last 10–100 ms. These changes allow different orientation columns to encode information from multiple items in the visual space (the so-called temporal encoding). However, the mechanism of these changes is still unknown. In addition, most of the modern biophysical models are unable to reproduce these changes; the peak orientation of their responses is constant over time. In this paper, we suggest a method to improve the firing-rate ring model of the orientation hypercolumn by replacing the spatial symmetric distribution of local connections with a spatial anti-symmetric distribution. As a result, we obtained a more perfect model that is capable of reproducing such changes. Moreover, their amplitude is proportional to the extent of asymmetry in the spatial distribution of local connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Hubel and T. N. Wiesel, J. Physiol. 160, 106 (1962).

    Article  Google Scholar 

  2. D. Z. Jin, V. Dragoi, M. Sur, and H. S. Seung, J. Neurophysiol. 94 (6), 4038 (2005).

    Article  Google Scholar 

  3. W. Wu, P. H. Tiesinga, T. R. Tucker, et al., J. Neurosci. 31 (36), 12767 (2011).

    Article  Google Scholar 

  4. N. Nortmann, S. Rekauzke, S. Onat, et al., Cereb. Cortex 25 (6), 1427 (2015).

    Article  Google Scholar 

  5. A. Benucci, D. L. Ringach, and M. Carandini, Nat. Neurosci. 12 (10), 1317 (2009).

    Article  Google Scholar 

  6. I. A. Shevelev, G. A. Sharaev, N. A. Lazareva, et al., Neuroscience 56 (4), 865 (1993).

    Article  Google Scholar 

  7. I. A. Shevelev, U. T. Eysel, N. A. Lazareva, and G. A. Sharaev, Neuroscience 84 (1), 11 (1998).

    Article  Google Scholar 

  8. E. D. Gershon, M. C. Wiener, P. E. Latham, and B. J. Richmond, J. Neurophysiol. 79 (3), 1135 (1998).

    Article  Google Scholar 

  9. N. A. Lazareva, D. Yu. Tsutskiridze, I. A. Shevelev, et al., Zh. Vyssh. Nerv. Deyat. 53 (6), 722 (2003).

    Google Scholar 

  10. N. A. Lazareva, S. A. Kozhukhov, R. S. Ivanov, et al., Zh. Vyssh. Nerv. Deyat. 63 (2), 205 (2013).

    Google Scholar 

  11. M. Mulas, S. Pojoga, and V. Dragoi, SfN Abstr. No. 160.17.

  12. S. A. Kozhukhov, K. A. Saltykov, and N. A. Lazareva, Zh. Vyssh. Nerv. Deyat. 66 (1), 36 (2016).

    Google Scholar 

  13. D. J. Richmond and L. M. Optican, J. Neurophysiol. 64 (2): 370 (1990).

    Google Scholar 

  14. A. Benucci, R. A. Frazor, and M. Carandini, Neuron 55 (1), 103 (2007).

    Article  Google Scholar 

  15. I. Nauhaus, L. Busse, D. L. Ringach, and M. Carandini, J. Neurosci. 32 (9), 3088 (2012).

    Article  Google Scholar 

  16. L. Muller and A. Destexhe, J. Physiol. (Paris) 106 (5–6), 222 (2012).

    Google Scholar 

  17. P. C. Bressloff and M. A. Webber, J. Comput. Neurosci. 32 (2), 233 (2012).

    Article  MathSciNet  Google Scholar 

  18. R. Malach, Y. Amir, M. Harel, and A. Grinvald, Proc. Natl. Acad. Sci. U. S. A. 90 (22), 10469 (1993).

    Article  ADS  Google Scholar 

  19. W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, J. Neurosci. 17 (6), 2112 (1997).

    Article  Google Scholar 

  20. A. Stepanyantz, J. A. Hirsch, L. M. Martinez, et al., Cereb. Cortex 18 (1), 2008.

    Google Scholar 

  21. K. A. Martin, S. Roth, and E. S. Rusch, Nat. Commun. 5, 5252 (2014).

    Article  ADS  Google Scholar 

  22. R. Miikulainen, J. A. Bednar, Y. Choe, and J. Siroch, Computational Maps in the Visual Cortex (Springer Science, 2005).

    Google Scholar 

  23. R. Ben-Yishai, R. L. Bar-Or, and H. Sompolinsky, Proc. Natl. Acad. Sci. U. S. A. 92 (9), 3844 (1995).

    Article  ADS  Google Scholar 

  24. P. C. Bressloff and J. D. Cowan, Phys. Rev. Lett. 88 (7), 078102 (2002).

    Article  ADS  Google Scholar 

  25. J. Schummers, B. Cronin, K. Wimmer, et al., Front. Neurosci. 1 (1), 145 (2007).

    Article  Google Scholar 

  26. A. V. Chizhov, J. Comput. Neurosci. 36 (2), 297 (2014).

    Article  MathSciNet  Google Scholar 

  27. E. Yu. Smirnova and A. V. Chizhov, Biophysics (Moscow) 56 (3), 496 (2011).

    Article  Google Scholar 

  28. E. Y. Smirnova, E. A. Chizhkova, and A. V. Chizhov, Biol. Cybern. 109 (4–5), 537 (2015).

    Article  Google Scholar 

  29. P. C. Bressloff, J. D. Cowan, M. Golubitsky, et al., Philos. Trans. R. Soc. Lond. B. 356 (1407), 299 (2001).

    Article  Google Scholar 

  30. S. He and D. I. MacLeod, Nature 411 (6836), 473 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozhukhov.

Additional information

Original Russian Text © S.A. Kozhukhov, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 544–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhukhov, S.A. A Model of Temporal Encoding of Stimulus Orientation by Neuronal Responses in the Primary Visual Cortex. BIOPHYSICS 63, 416–430 (2018). https://doi.org/10.1134/S0006350918030119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030119

Keywords

Navigation