Skip to main content
Log in

The Effect of Electromagnetic Radiation at Frequencies of 51.8 and 53.0 GHz on Growth, Pigment Content, Hydrogen Photoemission, and F0F1-ATPase Activity in the Purple Bacterium Rhodobacter sphaeroides

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Exposure of the purple bacteria Rhodobacter sphaeroides MDC6522 isolated from Jermuk mineral springs (Armenia) to extremely high-frequency electromagnetic radiation (51.8 and 53.0 GHz) for 15 min resulted in a pronounced increase in the specific growth rate and H2 photoemission. However, a significant decrease in the specific growth rate (1.6–2.0 times) was observed when the duration of irradiation was prolonged to 1 h. The maximum effect was at a frequency of 53.0 GHz. During irradiation for 1 h, absorption maxima typical of carotenoids gradually disappeared, and the level of bacteriochlorophyll а complexes decreased. Prolonged irradiation also inhibited the H2 production during bacterial growth for 72 h, although it was restored after 96 h of growth. The activity of N,N'-dicyclohexylcarbodiimide-sensitive proton F0F1- ATPase also decreased in Rh. sphaeroides. These results indicate that the membrane-bound F0F1-ATPase may be the main target of action of extremely-high-frequency electromagnetic radiation. The data we obtained can be used in biotechnology for control of growth and hydrogen metabolism of phototrophic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EHF EMR:

electromagnetic radiation of extremely high frequency

ORP:

oxidation-reduction potential

BCHL a :

bacteriochlorophyll a

DCCD:

N,N'-dicyclohexylcarbodiimide

References

  1. O. V. Betskii, N. D. Devyatkov, and V. V. Kislov, Crit. Rev. Biomed. Eng. 28, 247 (2000).

    Article  Google Scholar 

  2. D. Soghomonyan, K. Trchounian, and A. Trchounian, Appl. Mirobiol. Biotechnol. 100, 4761 (2016).

    Article  Google Scholar 

  3. H. Torgomyan and A. Trchounian, Crit. Rev. Microbiol. 39, 102 (2013).

    Article  Google Scholar 

  4. S. M. Janković, M. Z. Milošev, and M. L. J. Novaković, Hospital Pharmacol. 1 (2), 102 (2014).

    Google Scholar 

  5. A. Kh. Tambiev, Biomed. Radioelektr. 6, 4 (2014).

    Google Scholar 

  6. A. Kh. Tambiev and N. N. Kirikova, Crit. Rev. Biomed. Eng. 28 (3–4), 589 (2000).

    Article  Google Scholar 

  7. V. Ohanyan, A. Sarkisyan, A. Tadevosyan, and A. Trchounian, Biophysics (Moscow) 53 (5), 406 (2008).

    Article  Google Scholar 

  8. A. Tadevosyan and A. Trchounian, Biofizika 54 (6), 1055 (2009).

    Google Scholar 

  9. H. Torgomyan, V. Ohanyan, S. Blbulyan, et al., FEMS Microbiol. Lett. 329, 131 (2012).

    Article  Google Scholar 

  10. D. Soghomonyan and A. Trchounian, Cell Biochem. Biophys. 67, 829 (2013).

    Article  Google Scholar 

  11. L. Gabrielyan, H. Sargsyan, and A. Trchounian, Microb. Cell Factory 14, 131 (2015).

    Article  Google Scholar 

  12. H. Sargsyan, L. Gabrielyan, L. Hakobyan, and A. Trchounian, Int. J. Hydrogen Energy 40, 4084 (2015).

    Article  Google Scholar 

  13. R. K. Clayton, Photochem. Photobiol. 5 (8), 669 (1966).

    Article  Google Scholar 

  14. Z. B. Namsaraev, Microbiology (Moscow) 78 (6), 794 (2009).

    Article  Google Scholar 

  15. T. Maeda and T. K. Wood, Int. J. Hydrogen Energy 33, 2409 (2008).

    Article  Google Scholar 

  16. X. Hu, T. Ritz, A. Damjanovic, et al., Quarterly Rev. Biophys. 35, 1 (2002).

    Article  Google Scholar 

  17. A. Vasilyan and A. Trshounyan, Biophysics 53 (2), 281 (2009).

    Google Scholar 

  18. L. Gabrielyan, H. Sargsyan, L. Hakobyan, and A. Trchounian, Appl. Energy 131, 20 (2014).

    Article  Google Scholar 

  19. X. Li, Zh.-Zh. Dai, T.-H. Wang, and S.-L. Zhang, Int. J. Hydrogen Energy 36, 12794 (2011).

    Article  Google Scholar 

  20. A. A. Tsygankov and A. N. Khusnutdinova, Microbiology (Moscow) 84 (1), 1 (2015).

    Article  Google Scholar 

  21. L. Gabrielyan, H. Sargsyan, and A. Trchounian, J. Photochem. Photobiol. B: Biol. 162, 592 (2016).

    Article  Google Scholar 

  22. B.-F. Liu, N.-Qi. Ren, J. Ding, et al., Int. J. Hydrogen Energy 34, 721 (2009).

    Article  Google Scholar 

  23. N. I. Sinitsyn, V. I. Petrosyan, and V. A. Elkin, Biomed. Radioelektr. 1, 3 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trchounian.

Additional information

Original Russian Text © L. Gabrielyan, V. Kalantaryan, A. Trchounian, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 468–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabrielyan, L., Kalantaryan, V. & Trchounian, A. The Effect of Electromagnetic Radiation at Frequencies of 51.8 and 53.0 GHz on Growth, Pigment Content, Hydrogen Photoemission, and F0F1-ATPase Activity in the Purple Bacterium Rhodobacter sphaeroides. BIOPHYSICS 63, 351–356 (2018). https://doi.org/10.1134/S0006350918030077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030077

Keywords

Navigation