Skip to main content
Log in

Polyurethane Modified with Plasma-Ion Implantation for Medical Applications

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Medical polyurethane was treated with 20 keV nitrogen ions with a fluence of 1014–1016 ions/cm2. The modified polyurethane has a layered structure consisting of a 70-nm carbonized layer and a partly depolymerized layer below the carbonized layer. The high level of activity of the polyurethane due to free radicals provides stable adhesion of protein molecules to the surface layer of the polyurethane. The high level of hydrophilicity of the modified polyurethane surface preserves the biological activity of the attached proteins. This contributes to the attachment of endothelial cells to the polyurethane surface and their proliferation. Thus, this modified polyurethane can be used as a material for soft-tissue medical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Attenuated total reflection Fourier transform infrared:

ATR FTIR

References

  1. Biocompatibility, Ed. by V. I. Sevast’yanov and M. P. Kirpichnikov (Med. Inform. Agentstvo, Moscow, 1999) [in Russian].

    Google Scholar 

  2. M. D. Lelah and S. L. Cooper, Polyurethanes in Medicine (CRC Press, 1986).

    Google Scholar 

  3. R. S. Ward and R. L. Jones, in Comprehensive Biomaterials, Ed. by P. Ducheyne (Elsevier, Oxford, 2011), pp. 431–477.

  4. P. Klement, Y. J. Du, L. R. Berry, et al., Biomaterials 27, 5107 (2006).

    Article  Google Scholar 

  5. J. H. de Groot, R. de Vrijer, A. J. Pennings, et al., Biomaterials 17, 163 (1996).

    Article  Google Scholar 

  6. T. E. Lipatova and G. A. Pkhakadze, Polymers in Endoprosthetics (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  7. N. A. Plate and E. A. Vasil’ev, Khim. Farm. Zh., No. 7, 16 (1980).

    Google Scholar 

  8. N. R. James, J. Philip, and A. Jayakrishnan, Biomaterials 27, 160 (2006).

    Article  Google Scholar 

  9. Z. Ma, Y. Hong, D. M. Nelson, et al., Biomacromolecules 12, 3265 (2011).

    Article  Google Scholar 

  10. M. J. N. Pereira, B. Ouyang, C. A. Sundback, et al., Adv. Mater. 25, 1209 (2013).

    Article  Google Scholar 

  11. G. T. Howard, Int. Biodeterior. Biodegradation 49, 245 (2002).

    Article  Google Scholar 

  12. D. J. Wheatley, L. Raco, G. M. Bernacca, et al., Eur. J. Cardio-thoracic Surg. 17, 440 (2000).

    Article  Google Scholar 

  13. Y. Hong, S.-H. Ye, A. Nieponice, et al., Biomaterials 30, 2457 (2009).

    Article  Google Scholar 

  14. V. Kanyanta and A. Ivankovic, J. Mech. Behav. Biomed. Mater. 3, 51 (2010).

    Article  Google Scholar 

  15. R. Barnbauer, P. Mestres, R. Schiel, et al., Artif. Organs 21 (9), 1039 (1997).

    Article  Google Scholar 

  16. J. E. Graya, P. R. Nortona, R. Alnounoa, et al., Biomaterials 24, 2759 (2003).

    Article  Google Scholar 

  17. I. V. Osorgina, V. P. Begishev, A. V. Kondyurin, and S. A. Plaksin, Plasticheskie Massy, No. 8, 26 (1997).

    Google Scholar 

  18. Y. Suzuki, M. Kusakabe, J.-S. Lee, et al., Nucl. Instr. Meth. Phys. Res. B 65, 142 (1992).

    Article  ADS  Google Scholar 

  19. L. Dejun, Z. Jie, G. Hanqing, et al., Nucl. Instr. Meth. Phys. Res. B 82, 57 (1993).

    Article  ADS  Google Scholar 

  20. M. Iwaki, A. Nakao, M. Kaibara, et al., Nucl. Instr. Meth. Phys. Res. B 106, 618 (1995).

    Article  ADS  Google Scholar 

  21. Y. Suzuki, Nucl. Instr. Meth. Phys. Res. B 206, 501 (2003).

    Article  ADS  Google Scholar 

  22. K. H. Wong, M. Zinke-Allmang, W. K. Wan, et al., Nucl. Instr. Meth. Phys. Res. B 243, 63 (2006).

    Article  ADS  Google Scholar 

  23. J.-S. Lee, M. Kaibara, M. Iwaki, et al., Biomaterials 14 (12), 958 (1993).

    Article  Google Scholar 

  24. B. Pignataro, E. Conte, A. Scandurra, and G. Marletta, Biomaterials 18 (22), 1461 (1997).

    Article  Google Scholar 

  25. N. Ozkucur, E. Richter, C. Wetzel, et al., J. Biomed. Mater. Res. A 93, 258 (2009).

    Google Scholar 

  26. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, Mater. Sci. Engineer. R36, 143 (2002).

    Google Scholar 

  27. V. Begishev, N. Gavrilov, and G. Mesyats, in Proc. 12th Int. Conf. on High-Power Particle Beams, Ed. by M. Markovits and J. Shiloh (Haifa, Israel, 1998), Vol. 2, pp. 997–1000.

  28. A. Kondyurin and M. F. Maitz, US Patent WO 2007/022174 A3, 2007.

    Google Scholar 

  29. M. Bilek, D. McKenzie, N. Nosworthy, and A. Kondyurin, US Patent WO 2007104107 A1; Australian Patent Application No. 2007225021 (PCT/AU2007/000321), 2009.

    Google Scholar 

  30. A. Kondyurin and M. Bilek, Ion Beam Treatment of Polymers. Application Aspects from Medicine to Space (Elsevier, Oxford, 2008).

    Google Scholar 

  31. M. M. M. Bilek, D. V. Bax, A. Kondyurin, et al., Proc. Natl. Acad. Sci. U. S. A. 108 (35), 14405 (2011).

    Article  ADS  Google Scholar 

  32. G. A. Mesyats, Yu. S. Klyachkin, N. V. Garilov, et al., Vacuum 47 (9), 1085 (1996).

    Article  Google Scholar 

  33. E. Kosobrodova, A. Kondyurin, D. R. McKenzie, and M. M. M. Bilek, Nucl. Instr. Meth. Phys. Res. B 304, 57 (2013).

    Article  ADS  Google Scholar 

  34. E. Kosobrodova, A. Kondyurin, W. Chrzanowski, et al., Nucl. Instr. Meth. Phys. Res. B 329, 52 (2014).

    Article  ADS  Google Scholar 

  35. E. A. Kosobrodova, A. V. Kondyurin, K. Fisher, et al., Nucl. Instr. Meth. Phys. Res. B 280, 26 (2012).

    Article  ADS  Google Scholar 

  36. D. C. Nonhebel and J. C. Walton, Free Radical Chemistry: Structure and Mechanism (CUP Archive, 1974).

    Google Scholar 

  37. S. E. Stein and R. L. Brown, Carbon 23 (1), 105 (1985).

    Article  Google Scholar 

  38. N. V. Gavrilov, V. N. Mizgulin, R. Stinnett, and A. V. Kondyurin, Khi. Fiz. Mezoskop. 1 (1), 39 (1999).

    Google Scholar 

  39. A. V. Kondyurin, P. Naseri, J. M. R. Tilley, et al., Scientifica, Article ID 126170 (2012). doi http://dx.doi.org/doi 10.6064/2012/126170

    Google Scholar 

  40. M. Kuzuya, H. Ito, S. Kondo, et al., Macromolecules 24, 6612 (1991).

    Article  ADS  Google Scholar 

  41. A. Kondyurin, N. J. Nosworthy, M. M. M. Bilek, et al., J. Appl. Polymer Sci. 120, 2891 (2011).

    Article  Google Scholar 

  42. G. Mesyats, Yu. Klyachkin, N. Gavrilov, and A. Kondyurin, Vacuum 52, 285 (1999).

    Article  Google Scholar 

  43. A. Kondyurin and M. Bilek, Nucl. Instr. Meth. Phys. Res. B 269, 1361 (2011).

    Article  ADS  Google Scholar 

  44. J. F. Ziegler and J. P. Biersack, in The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), p. 321.

    Google Scholar 

  45. V. B. Odzhaev, I. P. Kozlov, V. N. Popok, and D. B. Zviridov, Ionic Implantation of Polymers (Beloruss. State Univ., Minsk, 1998) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chudinov.

Additional information

Original Russian Text © V.S. Chudinov, I.V. Kondyurina, I.N. Shardakov, A.L. Svistkov, I.V. Osorgina, A.V. Kondyurin, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 444–454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudinov, V.S., Kondyurina, I.V., Shardakov, I.N. et al. Polyurethane Modified with Plasma-Ion Implantation for Medical Applications. BIOPHYSICS 63, 330–339 (2018). https://doi.org/10.1134/S0006350918030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030053

Keywords

Navigation