Inference of Transcription Factor Regulation Patterns Using Gene Expression Covariation in Natural Populations of Drosophila melanogaster

Abstract

Gene regulatory networks control the complex programs that drive development. Deciphering the connections between transcription factors (TFs) and target genes is challenging, in part because TFs bind to thousands of places in the genome but control expression through a subset of these binding events. We hypothesize that we can combine natural variation of expression levels and predictions of TF binding sites to identify TF targets. We gather RNA-seq data from 71 genetically distinct F1 Drosophila melanogaster embryos and calculate the correlations between TF and potential target genes' expression levels, which we call “regulatory strength.” To separate direct and indirect TF targets, we hypothesize that direct TF targets will have a preponderance of binding sites in their upstream regions. Using 14 TFs active during embryogenesis, we find that 12 TFs showed a significant correlation between their binding strength and regulatory strength on downstream targets, and 10 TFs showed a significant correlation between the number of binding sites and the regulatory effect on target genes. The general roles, e.g. bicoid’s role as an activator, and the particular interactions we observed between our TFs, e.g. twist’s role as a repressor of sloppy paired and odd paired, generally coincide with the literature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. H. Davidson, Nature 468, 911 (2010).

    ADS  Article  Google Scholar 

  2. 2.

    I. S. Peter and E. H. Davidson, Cell 144, 970 (2011).

    Article  Google Scholar 

  3. 3.

    X. Li, S. MacArthur, R. Bourgon, et al., PLoS Biol. 6, e27 (2008).

    Article  Google Scholar 

  4. 4.

    J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, and N. M. Luscombe, Nat. Rev. Genet. 10, 252 (2009).

    Article  Google Scholar 

  5. 5.

    S. V. Nuzhdin, A. Rychkova, and M. W. Hahn, Trends Genet. 26, 51 (2010).

    Article  Google Scholar 

  6. 6.

    S. Yang, H. K. Yalamanchili, X. Li, et al., Bioinformatics 27 (21), 2972 (2011).

    Article  Google Scholar 

  7. 7.

    M. Levo and E. Segal, Nat. Rev. Genet. 15, 453 (2014).

    Article  Google Scholar 

  8. 8.

    A. Nasiadka, B. H. Dietrich, and H. M. Krause, Adv. Dev. Biol. Biochem. 12, 155 (2002).

    Article  Google Scholar 

  9. 9.

    S. Bonn and E. E. Furlong, Curr. Opin. Genet. Dev. 18, 513 (2008).

    Article  Google Scholar 

  10. 10.

    M. Levine and E. H. Davidson, Proc. Natl. Acad. Sci. U. S. A. 102, 4936 (2005).

    ADS  Article  Google Scholar 

  11. 11.

    K. Howard and P. Ingham, Cell 44, 949 (1986).

    Article  Google Scholar 

  12. 12.

    C. M. Bergman, J. W. Carlson, and S. E. Celniker, Bioinformatics 21, 1747 (2005).

    Article  Google Scholar 

  13. 13.

    R. Bonneau, Nat. Chem. Biol. 4, 658 (2008).

    Article  Google Scholar 

  14. 14.

    B. W. Busser, M. L. Bulyk, and A. M. Michelson, Curr. Opin. Genet. Dev. 18, 521 (2008).

    Article  Google Scholar 

  15. 15.

    R. E. Bumgarner and K. Y. Yeung, Comput. Syst. Biol. 541, 225 (2009).

    Article  Google Scholar 

  16. 16.

    P. J. Park, Nat. Rev. Genet. 10, 669 (2009).

    Article  Google Scholar 

  17. 17.

    S. Pepke, B. Wold, and A. Mortazavi, Nat. Methods 6, S22 (2009).

    Article  Google Scholar 

  18. 18.

    Y. R. Wang and H. Huang, J. Theor. Biol. 362, 53 (2014).

    Article  Google Scholar 

  19. 19.

    D. J. Kliebenstein, Plant Syst. Biol. 553, 227 (2009).

    Article  Google Scholar 

  20. 20.

    J. A. Lewis, I. M. Elkon, M. A. McGee, et al., Genetics 186, 1197 (2010).

    Article  Google Scholar 

  21. 21.

    S. Mostafavi, A. Ortiz-Lopez, M. A. Bogue, et al., J. Immunol. 193, 4485 (2014).

    Article  Google Scholar 

  22. 22.

    S. V. Nuzhdin, D. M. Tufts, and M. W. Hahn, Evol. Dev. 10, 683 (2008).

    Article  Google Scholar 

  23. 23.

    W. Jin, R. M. Riley, R. D. Wolfinger, et al., Nat. Genet. 29, 389 (2001).

    Article  Google Scholar 

  24. 24.

    S. V. Nuzhdin, M. L. Wayne, K. L. Harmon, and L. M. McIntyre, Mol. Biol. Evol. 21, 1308 (2004).

    Article  Google Scholar 

  25. 25.

    S. V. Nuzhdin, M. L. Friesen, and L. M. McIntyre, Trends Genet. 28, 421 (2012).

    Article  Google Scholar 

  26. 26.

    T. F. Mackay, S. Richards, E. A. Stone, et al., Nature 482, 173 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    D. Campo, K. Lehmann, C. Fjeldsted, et al., Mol. Ecol. 22, 5084 (2013).

    Article  Google Scholar 

  28. 28.

    J. P. Dunham and M. L. Friesen, Cold Spring Harb. Protoc. 9, 820 (2013).

    Google Scholar 

  29. 29.

    A. Dobin, C. A. Davis, F. Schlesinger, et al., Bioinformatics 29, 15 (2013).

    Article  Google Scholar 

  30. 30.

    S. Anders, P. T. Pyl, and W. Huber, Bioinformatics 31 (2), 166 (2015).

    Article  Google Scholar 

  31. 31.

    A. Mortazavi, B. A. Williams, K. McCue, et al., Nat. Methods 5, 621 (2008).

    Article  Google Scholar 

  32. 32.

    T. Sandmann, C. Girardot, M. Brehme, et al., Genes Dev. 21, 436 (2007).

    Article  Google Scholar 

  33. 33.

    J. A. Campos-Ortega and V. Hartenstein, The Embryonic Development of Drosophila melanogaster (Springer Sci. Business Media, 2013).

    Google Scholar 

  34. 34.

    S. Thomas, X.-Y. Li, P. J. Sabo, et al., Genome Biol. 12, R43 (2011).

    Article  Google Scholar 

  35. 35.

    G. Z. Hertz and G. D. Stormo, Bioinformatics 15, 563 (1999).

    Article  Google Scholar 

  36. 36.

    L. J. Zhu, R. G. Christensen, M. Kazemian, et al., Nucleic Acids Res. 39, D111 (2011).

    Article  Google Scholar 

  37. 37.

    Y. Benjamini and Y. Hochberg, J. R. Stat. Soc. Series B 57 (1), 289 (1995).

    Google Scholar 

  38. 38.

    Z. Wang, M. Gerstein, and M. Snyder, Nat. Rev. Genet. 10, 57 (2009).

    Article  Google Scholar 

  39. 39.

    G. Struhl, K. Struhl, and P. M. Macdonald, Cell 57, 1259 (1989).

    Article  Google Scholar 

  40. 40.

    M. Leptin, Genes Dev. 5, 1568 (1991).

    Article  Google Scholar 

  41. 41.

    R. M. Cripps, B. L. Black, B. Zhao, et al., Genes Dev. 12, 422 (1998).

    Article  Google Scholar 

  42. 42.

    A. Stathopoulos, M. Van Drenth, A. Erives, et al., Cell 111, 687 (2002).

    Article  Google Scholar 

  43. 43.

    M. D. Schroeder, M. Pierce, J. Fak, et al., PLoS Biol. 2, e271 (2004).

    Article  Google Scholar 

  44. 44.

    J. Zeitlinger, R. P. Zinzen, A. Stark, et al., Genes Dev. 21, 385 (2007).

    Article  Google Scholar 

  45. 45.

    A. Ochoa-Espinosa, D. Yu, A. Tsirigos, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 3823 (2009).

    ADS  Article  Google Scholar 

  46. 46.

    A. Porcher and N. Dostatni, Curr. Biol. 20, R249 (2010).

    Article  Google Scholar 

  47. 47.

    X. Wu, R. Vakani, and S. Small, Development 125, 3765 (1998).

    Google Scholar 

  48. 48.

    G. F. Hewitt, et al., Development 126, 1201 (1999).

    Google Scholar 

  49. 49.

    E. Morán and G. Jiménez, Mol. Cell. Biol. 26, 3446 (2006).

    Article  Google Scholar 

  50. 50.

    J. O. Yáñez-Cuna, E. Z. Kvon, and A. Stark, Trends Genet. 29, 11 (2013).

    Article  Google Scholar 

  51. 51.

    A. S. Manoukian and H. M. Krause, Genes Dev. 6, 1740 (1992).

    Article  Google Scholar 

  52. 52.

    S. Barolo and M. Levine, EMBO J. 16, 2883 (1997).

    Article  Google Scholar 

  53. 53.

    G. Jiménez, Z. E. Paroush, and D. Ish-Horowicz, Genes Dev. 11, 3072 (1997).

    Article  Google Scholar 

  54. 54.

    M. Kobayashi, R. E. Goldstein, M. Fujioka et al., Development 128, 1805 (2001).

    Google Scholar 

  55. 55.

    M. Fujioka, G. L. Yusibova, N. H. Patel, et al., Development 129, 4411 (2002).

    Google Scholar 

  56. 56.

    D. Bianchi-Frias, A. Orian, J. J. Delrow, et al., PLoS Biol. 2, e178. (2004).

    Article  Google Scholar 

  57. 57.

    Y. Hiromi and W. J. Gehring, Cell 50, 963 (1987).

    Article  Google Scholar 

  58. 58.

    S. G. Kramer, T. M. Jinks, P. Schedl, and J. P. Gergen, Development 126, 191 (1999).

    Google Scholar 

  59. 59.

    Y. Yu, M. Yussa, J. Song, et al., Mech. Dev. 83, 95 (1999).

    Article  Google Scholar 

  60. 60.

    A. Nasiadka, A. Grill, and H. M. Krause, Development 127, 2965 (2000).

    Google Scholar 

  61. 61.

    J. C. Wheeler, K. Shigesada, J. P. Gergen, and Y. Ito, Semin. Cell Dev. Biol. 11, 369 (2000).

    Article  Google Scholar 

  62. 62.

    P. I. Zuo, D. Stanojević, J. Colgan, et al., Genes Dev. 5, 254 (1991).

    Article  Google Scholar 

  63. 63.

    M. V. Staller, B. J. Vincent, M. D. J. Bragdon, et al., Proc. Natl. Acad. Sci. U. S. A. 112, 785 (2015).

    ADS  Article  Google Scholar 

  64. 64.

    F. Sauer and H. Jäckle, Nature 353, 563 (1991).

    ADS  Article  Google Scholar 

  65. 65.

    F. Sauer, J. D. Fondell, Y. Ohkuma, et al., Nature 375, 162 (1995).

    ADS  Article  Google Scholar 

  66. 66.

    A. La Rosée-Borggreve, T. Häder, D. Wainwright, et al., Mech. Dev. 89, 133 (1999).

    Article  Google Scholar 

  67. 67.

    J. Heemskerk, S. DiNardo, R. Kostriken, and P. H. O’Farrell, Nature 352, 404 (1991).

    ADS  Article  Google Scholar 

  68. 68.

    T. Tabata, S. Eaton, and T. B. Kornberg, Genes Dev. 6, 2635 (1992).

    Article  Google Scholar 

  69. 69.

    C. Alexandre and J. P. Vincent, Development 130, 729 (2003).

    Article  Google Scholar 

  70. 70.

    M. Rembold, L. Ciglar, J. O. Yáñez-Cuna, et al., Genes Dev. 28, 167 (2014).

    Article  Google Scholar 

  71. 71.

    L. Sánchez and D. Thieffry, J. Theor. Biol. 211, 115 (2001).

    Article  Google Scholar 

  72. 72.

    J. Jaeger, M. Blagov, D. Kosman, et al., Genetics 167 (4), 1721 (2004).

    Article  Google Scholar 

  73. 73.

    J. Jaeger, Cell. Mol. Life Sci. 68, 243 (2011).

    Article  Google Scholar 

  74. 74.

    F. Liu, A. H. Morrison, and T. Gregor, Proc. Natl. Acad. Sci. U. S. A. 110, 6724 (2013).

    ADS  Article  Google Scholar 

  75. 75.

    I. A. Gula and A. M. Samsonov, Bioinformatics 31, 714 (2015).

    Article  Google Scholar 

  76. 76.

    S. MacArthur, X.-Y. Li, J. Li, et al., Genome Biol. 10, R80 (2009).

    Article  Google Scholar 

  77. 77.

    J. M. Franco-Zorrilla, I. López-Vidriero, J. L. Carrasco, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 2367 (2014).

    ADS  Article  Google Scholar 

  78. 78.

    B. R. Graveley, A. N. Brooks, J. W. Carlson, et al., Nature 471 (7339), 473 (2011).

    ADS  Article  Google Scholar 

  79. 79.

    A. S. Hammonds, C. A. Bristow, W. W. Fisher, et al., Genome Biol. 14, R140 (2013).

    Article  Google Scholar 

  80. 80.

    M. D. Biggin and R. Tjian, Funct. Integr. Genomics 1, 223 (2001).

    Article  Google Scholar 

  81. 81.

    M. Levine and R. Tjian, Nature 424, 147 (2003).

    ADS  Article  Google Scholar 

  82. 82.

    S. Björklund, G. Almouzni, I. Davidson, et al., Cell 96, 759 (1999).

    Article  Google Scholar 

  83. 83.

    A. Tanay, Genome Res. 16, 962 (2006).

    Article  Google Scholar 

  84. 84.

    M. Mannervik, Y. Nibu, H. Zhang, and M. Levine, Science 284, 606 (1999).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Nuzhdin.

Additional information

The article is published in the original.

Supplementary materials are available for this article at 10.1134/S0006350918010128 and are accessible for authorized users.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osman, N.M., Kitapci, T.H., Vlaho, S. et al. Inference of Transcription Factor Regulation Patterns Using Gene Expression Covariation in Natural Populations of Drosophila melanogaster. BIOPHYSICS 63, 43–51 (2018). https://doi.org/10.1134/S0006350918010128

Download citation

Keywords

  • Drosophila melanogaster
  • gene regulatory networks
  • transcription factors