Advertisement

Biophysics

, Volume 63, Issue 1, pp 43–51 | Cite as

Inference of Transcription Factor Regulation Patterns Using Gene Expression Covariation in Natural Populations of Drosophila melanogaster

  • N. M. Osman
  • T. H. Kitapci
  • S. Vlaho
  • Z. Wunderlich
  • S. V. Nuzhdin
Molecular Biophysics
  • 35 Downloads

Abstract

Gene regulatory networks control the complex programs that drive development. Deciphering the connections between transcription factors (TFs) and target genes is challenging, in part because TFs bind to thousands of places in the genome but control expression through a subset of these binding events. We hypothesize that we can combine natural variation of expression levels and predictions of TF binding sites to identify TF targets. We gather RNA-seq data from 71 genetically distinct F1 Drosophila melanogaster embryos and calculate the correlations between TF and potential target genes' expression levels, which we call “regulatory strength.” To separate direct and indirect TF targets, we hypothesize that direct TF targets will have a preponderance of binding sites in their upstream regions. Using 14 TFs active during embryogenesis, we find that 12 TFs showed a significant correlation between their binding strength and regulatory strength on downstream targets, and 10 TFs showed a significant correlation between the number of binding sites and the regulatory effect on target genes. The general roles, e.g. bicoid’s role as an activator, and the particular interactions we observed between our TFs, e.g. twist’s role as a repressor of sloppy paired and odd paired, generally coincide with the literature.

Keywords

Drosophila melanogaster gene regulatory networks transcription factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Davidson, Nature 468, 911 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    I. S. Peter and E. H. Davidson, Cell 144, 970 (2011).CrossRefGoogle Scholar
  3. 3.
    X. Li, S. MacArthur, R. Bourgon, et al., PLoS Biol. 6, e27 (2008).CrossRefGoogle Scholar
  4. 4.
    J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, and N. M. Luscombe, Nat. Rev. Genet. 10, 252 (2009).CrossRefGoogle Scholar
  5. 5.
    S. V. Nuzhdin, A. Rychkova, and M. W. Hahn, Trends Genet. 26, 51 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Yang, H. K. Yalamanchili, X. Li, et al., Bioinformatics 27 (21), 2972 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Levo and E. Segal, Nat. Rev. Genet. 15, 453 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Nasiadka, B. H. Dietrich, and H. M. Krause, Adv. Dev. Biol. Biochem. 12, 155 (2002).CrossRefGoogle Scholar
  9. 9.
    S. Bonn and E. E. Furlong, Curr. Opin. Genet. Dev. 18, 513 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Levine and E. H. Davidson, Proc. Natl. Acad. Sci. U. S. A. 102, 4936 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    K. Howard and P. Ingham, Cell 44, 949 (1986).CrossRefGoogle Scholar
  12. 12.
    C. M. Bergman, J. W. Carlson, and S. E. Celniker, Bioinformatics 21, 1747 (2005).CrossRefGoogle Scholar
  13. 13.
    R. Bonneau, Nat. Chem. Biol. 4, 658 (2008).CrossRefGoogle Scholar
  14. 14.
    B. W. Busser, M. L. Bulyk, and A. M. Michelson, Curr. Opin. Genet. Dev. 18, 521 (2008).CrossRefGoogle Scholar
  15. 15.
    R. E. Bumgarner and K. Y. Yeung, Comput. Syst. Biol. 541, 225 (2009).CrossRefGoogle Scholar
  16. 16.
    P. J. Park, Nat. Rev. Genet. 10, 669 (2009).CrossRefGoogle Scholar
  17. 17.
    S. Pepke, B. Wold, and A. Mortazavi, Nat. Methods 6, S22 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. R. Wang and H. Huang, J. Theor. Biol. 362, 53 (2014).CrossRefGoogle Scholar
  19. 19.
    D. J. Kliebenstein, Plant Syst. Biol. 553, 227 (2009).CrossRefGoogle Scholar
  20. 20.
    J. A. Lewis, I. M. Elkon, M. A. McGee, et al., Genetics 186, 1197 (2010).CrossRefGoogle Scholar
  21. 21.
    S. Mostafavi, A. Ortiz-Lopez, M. A. Bogue, et al., J. Immunol. 193, 4485 (2014).CrossRefGoogle Scholar
  22. 22.
    S. V. Nuzhdin, D. M. Tufts, and M. W. Hahn, Evol. Dev. 10, 683 (2008).CrossRefGoogle Scholar
  23. 23.
    W. Jin, R. M. Riley, R. D. Wolfinger, et al., Nat. Genet. 29, 389 (2001).CrossRefGoogle Scholar
  24. 24.
    S. V. Nuzhdin, M. L. Wayne, K. L. Harmon, and L. M. McIntyre, Mol. Biol. Evol. 21, 1308 (2004).CrossRefGoogle Scholar
  25. 25.
    S. V. Nuzhdin, M. L. Friesen, and L. M. McIntyre, Trends Genet. 28, 421 (2012).CrossRefGoogle Scholar
  26. 26.
    T. F. Mackay, S. Richards, E. A. Stone, et al., Nature 482, 173 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    D. Campo, K. Lehmann, C. Fjeldsted, et al., Mol. Ecol. 22, 5084 (2013).CrossRefGoogle Scholar
  28. 28.
    J. P. Dunham and M. L. Friesen, Cold Spring Harb. Protoc. 9, 820 (2013).Google Scholar
  29. 29.
    A. Dobin, C. A. Davis, F. Schlesinger, et al., Bioinformatics 29, 15 (2013).CrossRefGoogle Scholar
  30. 30.
    S. Anders, P. T. Pyl, and W. Huber, Bioinformatics 31 (2), 166 (2015).CrossRefGoogle Scholar
  31. 31.
    A. Mortazavi, B. A. Williams, K. McCue, et al., Nat. Methods 5, 621 (2008).CrossRefGoogle Scholar
  32. 32.
    T. Sandmann, C. Girardot, M. Brehme, et al., Genes Dev. 21, 436 (2007).CrossRefGoogle Scholar
  33. 33.
    J. A. Campos-Ortega and V. Hartenstein, The Embryonic Development of Drosophila melanogaster (Springer Sci. Business Media, 2013).Google Scholar
  34. 34.
    S. Thomas, X.-Y. Li, P. J. Sabo, et al., Genome Biol. 12, R43 (2011).CrossRefGoogle Scholar
  35. 35.
    G. Z. Hertz and G. D. Stormo, Bioinformatics 15, 563 (1999).CrossRefGoogle Scholar
  36. 36.
    L. J. Zhu, R. G. Christensen, M. Kazemian, et al., Nucleic Acids Res. 39, D111 (2011).CrossRefGoogle Scholar
  37. 37.
    Y. Benjamini and Y. Hochberg, J. R. Stat. Soc. Series B 57 (1), 289 (1995).Google Scholar
  38. 38.
    Z. Wang, M. Gerstein, and M. Snyder, Nat. Rev. Genet. 10, 57 (2009).CrossRefGoogle Scholar
  39. 39.
    G. Struhl, K. Struhl, and P. M. Macdonald, Cell 57, 1259 (1989).CrossRefGoogle Scholar
  40. 40.
    M. Leptin, Genes Dev. 5, 1568 (1991).CrossRefGoogle Scholar
  41. 41.
    R. M. Cripps, B. L. Black, B. Zhao, et al., Genes Dev. 12, 422 (1998).CrossRefGoogle Scholar
  42. 42.
    A. Stathopoulos, M. Van Drenth, A. Erives, et al., Cell 111, 687 (2002).CrossRefGoogle Scholar
  43. 43.
    M. D. Schroeder, M. Pierce, J. Fak, et al., PLoS Biol. 2, e271 (2004).CrossRefGoogle Scholar
  44. 44.
    J. Zeitlinger, R. P. Zinzen, A. Stark, et al., Genes Dev. 21, 385 (2007).CrossRefGoogle Scholar
  45. 45.
    A. Ochoa-Espinosa, D. Yu, A. Tsirigos, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 3823 (2009).ADSCrossRefGoogle Scholar
  46. 46.
    A. Porcher and N. Dostatni, Curr. Biol. 20, R249 (2010).CrossRefGoogle Scholar
  47. 47.
    X. Wu, R. Vakani, and S. Small, Development 125, 3765 (1998).Google Scholar
  48. 48.
    G. F. Hewitt, et al., Development 126, 1201 (1999).Google Scholar
  49. 49.
    E. Morán and G. Jiménez, Mol. Cell. Biol. 26, 3446 (2006).CrossRefGoogle Scholar
  50. 50.
    J. O. Yáñez-Cuna, E. Z. Kvon, and A. Stark, Trends Genet. 29, 11 (2013).CrossRefGoogle Scholar
  51. 51.
    A. S. Manoukian and H. M. Krause, Genes Dev. 6, 1740 (1992).CrossRefGoogle Scholar
  52. 52.
    S. Barolo and M. Levine, EMBO J. 16, 2883 (1997).CrossRefGoogle Scholar
  53. 53.
    G. Jiménez, Z. E. Paroush, and D. Ish-Horowicz, Genes Dev. 11, 3072 (1997).CrossRefGoogle Scholar
  54. 54.
    M. Kobayashi, R. E. Goldstein, M. Fujioka et al., Development 128, 1805 (2001).Google Scholar
  55. 55.
    M. Fujioka, G. L. Yusibova, N. H. Patel, et al., Development 129, 4411 (2002).Google Scholar
  56. 56.
    D. Bianchi-Frias, A. Orian, J. J. Delrow, et al., PLoS Biol. 2, e178. (2004).CrossRefGoogle Scholar
  57. 57.
    Y. Hiromi and W. J. Gehring, Cell 50, 963 (1987).CrossRefGoogle Scholar
  58. 58.
    S. G. Kramer, T. M. Jinks, P. Schedl, and J. P. Gergen, Development 126, 191 (1999).Google Scholar
  59. 59.
    Y. Yu, M. Yussa, J. Song, et al., Mech. Dev. 83, 95 (1999).CrossRefGoogle Scholar
  60. 60.
    A. Nasiadka, A. Grill, and H. M. Krause, Development 127, 2965 (2000).Google Scholar
  61. 61.
    J. C. Wheeler, K. Shigesada, J. P. Gergen, and Y. Ito, Semin. Cell Dev. Biol. 11, 369 (2000).CrossRefGoogle Scholar
  62. 62.
    P. I. Zuo, D. Stanojević, J. Colgan, et al., Genes Dev. 5, 254 (1991).CrossRefGoogle Scholar
  63. 63.
    M. V. Staller, B. J. Vincent, M. D. J. Bragdon, et al., Proc. Natl. Acad. Sci. U. S. A. 112, 785 (2015).ADSCrossRefGoogle Scholar
  64. 64.
    F. Sauer and H. Jäckle, Nature 353, 563 (1991).ADSCrossRefGoogle Scholar
  65. 65.
    F. Sauer, J. D. Fondell, Y. Ohkuma, et al., Nature 375, 162 (1995).ADSCrossRefGoogle Scholar
  66. 66.
    A. La Rosée-Borggreve, T. Häder, D. Wainwright, et al., Mech. Dev. 89, 133 (1999).CrossRefGoogle Scholar
  67. 67.
    J. Heemskerk, S. DiNardo, R. Kostriken, and P. H. O’Farrell, Nature 352, 404 (1991).ADSCrossRefGoogle Scholar
  68. 68.
    T. Tabata, S. Eaton, and T. B. Kornberg, Genes Dev. 6, 2635 (1992).CrossRefGoogle Scholar
  69. 69.
    C. Alexandre and J. P. Vincent, Development 130, 729 (2003).CrossRefGoogle Scholar
  70. 70.
    M. Rembold, L. Ciglar, J. O. Yáñez-Cuna, et al., Genes Dev. 28, 167 (2014).CrossRefGoogle Scholar
  71. 71.
    L. Sánchez and D. Thieffry, J. Theor. Biol. 211, 115 (2001).CrossRefGoogle Scholar
  72. 72.
    J. Jaeger, M. Blagov, D. Kosman, et al., Genetics 167 (4), 1721 (2004).CrossRefGoogle Scholar
  73. 73.
    J. Jaeger, Cell. Mol. Life Sci. 68, 243 (2011).CrossRefGoogle Scholar
  74. 74.
    F. Liu, A. H. Morrison, and T. Gregor, Proc. Natl. Acad. Sci. U. S. A. 110, 6724 (2013).ADSCrossRefGoogle Scholar
  75. 75.
    I. A. Gula and A. M. Samsonov, Bioinformatics 31, 714 (2015).CrossRefGoogle Scholar
  76. 76.
    S. MacArthur, X.-Y. Li, J. Li, et al., Genome Biol. 10, R80 (2009).CrossRefGoogle Scholar
  77. 77.
    J. M. Franco-Zorrilla, I. López-Vidriero, J. L. Carrasco, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 2367 (2014).ADSCrossRefGoogle Scholar
  78. 78.
    B. R. Graveley, A. N. Brooks, J. W. Carlson, et al., Nature 471 (7339), 473 (2011).ADSCrossRefGoogle Scholar
  79. 79.
    A. S. Hammonds, C. A. Bristow, W. W. Fisher, et al., Genome Biol. 14, R140 (2013).CrossRefGoogle Scholar
  80. 80.
    M. D. Biggin and R. Tjian, Funct. Integr. Genomics 1, 223 (2001).CrossRefGoogle Scholar
  81. 81.
    M. Levine and R. Tjian, Nature 424, 147 (2003).ADSCrossRefGoogle Scholar
  82. 82.
    S. Björklund, G. Almouzni, I. Davidson, et al., Cell 96, 759 (1999).CrossRefGoogle Scholar
  83. 83.
    A. Tanay, Genome Res. 16, 962 (2006).CrossRefGoogle Scholar
  84. 84.
    M. Mannervik, Y. Nibu, H. Zhang, and M. Levine, Science 284, 606 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. M. Osman
    • 1
    • 3
  • T. H. Kitapci
    • 1
  • S. Vlaho
    • 1
  • Z. Wunderlich
    • 2
  • S. V. Nuzhdin
    • 1
    • 4
  1. 1.University of Southern CaliforniaLos AngelesCaliforniaUSA
  2. 2.University of CaliforniaIrvine, CaliforniaUSA
  3. 3.National Research CentreDokki, GizaEgypt
  4. 4.Saint Petersburg Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations