Advertisement

Biophysics

, Volume 62, Issue 6, pp 980–983 | Cite as

The State of the Adenyl Nucleotide System in the Liver of Rats with Toxic Hepatitis under Conditions of Protein Deficiency

  • O. N. VoloshchukEmail author
  • G. P. Kopylchuk
Biophysics of Complex Systems

Abstract

Adenyl nucleotide levels and activity of AMP catabolism enzymes in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis have been studied under different dietary protein regimens. It was found that in animals with toxic hepatitis maintained on a diet rich in protein the ATP and ADP levels decreased, while AMP levels were similar to those in control animals. At the same time, in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis kept under conditions of protein deficiency, ATP and AMP pools were depleted. Changes in the adenyl nucleotides content were accompanied by altered activity of AMP catabolism enzymes, such as 5′-nucleotidase and AMP deaminase. It was found that in rats with toxic hepatitis that were fed a complete diet, AMP deaminase activity increased in comparison to the control level along with 5′-nucleotidase stimulation. At the same time, in protein-restricted rats with toxic liver damage, AMP deaminase activity decreased, while 5′-nucleotidase activity was elevated in comparison to control values. These results indicate depletion of energy sources in the liver cells of rats with acetaminophen-induced hepatitis that were fed a low-protein diet. The observed changes in the activity of AMP catabolism enzymes may be considered as one of the mechanisms that regulate the cellular energy function.

Keywords

alimentary protein deficiency toxic hepatitis cytosolic fraction adenyl nucleotides 5′-nucleotidase AMP deaminase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. K. Lee, N. Imaizumi, S. R. Chamberland, et al., Hepatology 6 (1), 326 (2015).CrossRefGoogle Scholar
  2. 2.
    H. Jaeschke, M. R. McGill, and A. Ramachandran, Drug. Metab. Rev. 44, 88 (2012).CrossRefGoogle Scholar
  3. 3.
    J. A. Hinson, D. W. Roberts, and L. P. James, Handb. Exp. Pharmacol. 196, 369 (2010).CrossRefGoogle Scholar
  4. 4.
    V. V. Davydov, I. V. Zakharchenko, and V. G. Ovsyannikov, Biomed. Khim. 51 (5), 522 (2005).Google Scholar
  5. 5.
    E. D. Berglund, R. S. Lee-Young, and D. G. Lustig, J. Clin. Invest. 119 (8), 2412 (2009).CrossRefGoogle Scholar
  6. 6.
    F. Marmol, J. Sanchez, and D. Lopez, Physiol. Res. 59, 553 (2010).Google Scholar
  7. 7.
    C. Plaideau, J. Liu, J. Hartleib-Geschwindner, et al., FASEB J. 26 (6), 2685 (2012).CrossRefGoogle Scholar
  8. 8.
    K. L. Bogan and C. Brenner, New J. Chem. 34, 845 (2010).CrossRefGoogle Scholar
  9. 9.
    P. G. Reeves, F. H. Nielsen, and G. C. Fahey, J. Nutr. 5, 1939 (1993).CrossRefGoogle Scholar
  10. 10.
    O. N. Voloshchuk, G. P. Kopylchuk, and T. G. Kadaiskaya, Vopr. Pitaniya 83 (3), 12 (2014).Google Scholar
  11. 11.
    G. Kuvandik, M. Duru, A. Nacar, et al., Toxicol. Pathol. 36 (5), 714 (2008).CrossRefGoogle Scholar
  12. 12.
    V. I. Dreval’, A. V. Finain, and E. A. Barannik, Ukr. Biokhim. Zh. 61 (2), 94 (1989).Google Scholar
  13. 13.
    I. V. Zarubina and B. I. Krivoruchko, Ukr. Biokhim. Zh. 54 (4), 437 (1982).Google Scholar
  14. 14.
    A. V. Maidanyuk, Visn. Kyiv. Nats. Univ., Ser. Biol. 42–45, 12 (2004).Google Scholar
  15. 15.
    T. S. Tapbergenov and S. O. Tapbergenov, Usp. Sovrem. Estestvozn. 7, 92 (2009).Google Scholar
  16. 16.
    G. P. Kopylchuk and O. M. Voloshchuk, Ukr. Biokhim. Zh. 87 (1), 123 (2015).Google Scholar
  17. 17.
    O. N. Voloshchuk and G. P. Kopylchuk, Biophysics (Moscow) 60 (3), 420 (2015).CrossRefGoogle Scholar
  18. 18.
    C. Y. Li, J. Z. Liu, and L. P. Wu, World J. Gastroenterol. 12 (13), 2120 (2006).CrossRefGoogle Scholar
  19. 19.
    C. M. P. Cardosoa, A. J. M. Moreno, L. M. Almeida, and J. B. A. Custodio, Toxicol. In Vitro 17, 663 (2003).CrossRefGoogle Scholar
  20. 20.
    I. O. Dotsenko and Ya. A. Troshchinskaya, Visn. Dnipropetrovsk. Univ., Ser. Biol. Ekol. 22 (1), 46 (2014).CrossRefGoogle Scholar
  21. 21.
    G. Kocic, J. Nikolic, T. Jevtovic-Stoimenov, et al., Sci. World J. 2012, Article ID 208239 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute of Biology, Chemistry, and BioresourcesFedkovych Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations