Skip to main content

The State of the Adenyl Nucleotide System in the Liver of Rats with Toxic Hepatitis under Conditions of Protein Deficiency


Adenyl nucleotide levels and activity of AMP catabolism enzymes in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis have been studied under different dietary protein regimens. It was found that in animals with toxic hepatitis maintained on a diet rich in protein the ATP and ADP levels decreased, while AMP levels were similar to those in control animals. At the same time, in the cytosolic liver fraction of rats with acetaminophen-induced hepatitis kept under conditions of protein deficiency, ATP and AMP pools were depleted. Changes in the adenyl nucleotides content were accompanied by altered activity of AMP catabolism enzymes, such as 5′-nucleotidase and AMP deaminase. It was found that in rats with toxic hepatitis that were fed a complete diet, AMP deaminase activity increased in comparison to the control level along with 5′-nucleotidase stimulation. At the same time, in protein-restricted rats with toxic liver damage, AMP deaminase activity decreased, while 5′-nucleotidase activity was elevated in comparison to control values. These results indicate depletion of energy sources in the liver cells of rats with acetaminophen-induced hepatitis that were fed a low-protein diet. The observed changes in the activity of AMP catabolism enzymes may be considered as one of the mechanisms that regulate the cellular energy function.

This is a preview of subscription content, access via your institution.


  1. 1.

    K. K. Lee, N. Imaizumi, S. R. Chamberland, et al., Hepatology 6 (1), 326 (2015).

    Article  Google Scholar 

  2. 2.

    H. Jaeschke, M. R. McGill, and A. Ramachandran, Drug. Metab. Rev. 44, 88 (2012).

    Article  Google Scholar 

  3. 3.

    J. A. Hinson, D. W. Roberts, and L. P. James, Handb. Exp. Pharmacol. 196, 369 (2010).

    Article  Google Scholar 

  4. 4.

    V. V. Davydov, I. V. Zakharchenko, and V. G. Ovsyannikov, Biomed. Khim. 51 (5), 522 (2005).

    Google Scholar 

  5. 5.

    E. D. Berglund, R. S. Lee-Young, and D. G. Lustig, J. Clin. Invest. 119 (8), 2412 (2009).

    Article  Google Scholar 

  6. 6.

    F. Marmol, J. Sanchez, and D. Lopez, Physiol. Res. 59, 553 (2010).

    Google Scholar 

  7. 7.

    C. Plaideau, J. Liu, J. Hartleib-Geschwindner, et al., FASEB J. 26 (6), 2685 (2012).

    Article  Google Scholar 

  8. 8.

    K. L. Bogan and C. Brenner, New J. Chem. 34, 845 (2010).

    Article  Google Scholar 

  9. 9.

    P. G. Reeves, F. H. Nielsen, and G. C. Fahey, J. Nutr. 5, 1939 (1993).

    Article  Google Scholar 

  10. 10.

    O. N. Voloshchuk, G. P. Kopylchuk, and T. G. Kadaiskaya, Vopr. Pitaniya 83 (3), 12 (2014).

    Google Scholar 

  11. 11.

    G. Kuvandik, M. Duru, A. Nacar, et al., Toxicol. Pathol. 36 (5), 714 (2008).

    Article  Google Scholar 

  12. 12.

    V. I. Dreval’, A. V. Finain, and E. A. Barannik, Ukr. Biokhim. Zh. 61 (2), 94 (1989).

    Google Scholar 

  13. 13.

    I. V. Zarubina and B. I. Krivoruchko, Ukr. Biokhim. Zh. 54 (4), 437 (1982).

    Google Scholar 

  14. 14.

    A. V. Maidanyuk, Visn. Kyiv. Nats. Univ., Ser. Biol. 42–45, 12 (2004).

    Google Scholar 

  15. 15.

    T. S. Tapbergenov and S. O. Tapbergenov, Usp. Sovrem. Estestvozn. 7, 92 (2009).

    Google Scholar 

  16. 16.

    G. P. Kopylchuk and O. M. Voloshchuk, Ukr. Biokhim. Zh. 87 (1), 123 (2015).

    Google Scholar 

  17. 17.

    O. N. Voloshchuk and G. P. Kopylchuk, Biophysics (Moscow) 60 (3), 420 (2015).

    Article  Google Scholar 

  18. 18.

    C. Y. Li, J. Z. Liu, and L. P. Wu, World J. Gastroenterol. 12 (13), 2120 (2006).

    Article  Google Scholar 

  19. 19.

    C. M. P. Cardosoa, A. J. M. Moreno, L. M. Almeida, and J. B. A. Custodio, Toxicol. In Vitro 17, 663 (2003).

    Article  Google Scholar 

  20. 20.

    I. O. Dotsenko and Ya. A. Troshchinskaya, Visn. Dnipropetrovsk. Univ., Ser. Biol. Ekol. 22 (1), 46 (2014).

    Article  Google Scholar 

  21. 21.

    G. Kocic, J. Nikolic, T. Jevtovic-Stoimenov, et al., Sci. World J. 2012, Article ID 208239 (2012).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. N. Voloshchuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voloshchuk, O.N., Kopylchuk, G.P. The State of the Adenyl Nucleotide System in the Liver of Rats with Toxic Hepatitis under Conditions of Protein Deficiency. BIOPHYSICS 62, 980–983 (2017).

Download citation


  • alimentary protein deficiency
  • toxic hepatitis
  • cytosolic fraction
  • adenyl nucleotides
  • 5′-nucleotidase
  • AMP deaminase