Skip to main content
Log in

Dark adaptation and conformations of carotenoids in the cells of Cladophora aegagropila (L). Rabenh.

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Intact cells of freshwater algae Cladophora aegagropila (L). Rabenh. (synonymous to Aegagropila linnaei Kutz.) were investigated by resonance Raman spectroscopy. It was found that incubation in the dark (up to 24 h) leads to changes in the Raman spectroscopy spectrum of this species, namely to changes in the ratio of amplitudes of the I1523/I1155 and I960/I1004 bands and in the half width of band in the region of 1523 cm–1. We suggested that the adaptation of algae to the dark alters the conformation of the molecule of the carotenoid by delocalization of π-electrons in the polyene chain of the molecule and changes the orientation of the ring. Moreover, the composition of carotenoids, as well as their location in the cell and microenvironment in the pigment–protein complexes can change: in the absence of illumination, the distribution of carotenoids in algal cells is more uniform. These changes are probably caused either by changes in the location of cell organelles or by carotenoid redistribution between photosynthetic membranes, plastoglobules, and lipophilic formations in the cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. O’Dell, A. R. Mudinoor, S. J. Parikh, and T. Jeoh, Cellulose 22 (3), 1697 (2015). doi 10.1007/s10570-015-0618-y

    Article  Google Scholar 

  2. Y. Yoshii, I. Wakana, K. Miyaji, et al., J. Phycol. 40, 1170 (2004).

    Article  Google Scholar 

  3. B. R. Green, Annu. Rev. Plant Physiolol. Plant Mol. Biol. 47, 685 (1996).

    Article  Google Scholar 

  4. A. M. Collins, H. D. T. Jones, D. Han, et al., PLoS ONE 6 (9), 123 (2011).

    Article  Google Scholar 

  5. P. Jahns, D. Latowski, and K. Strzalka, Biochim. Biophys. Acta 1787, 3 (2009).

    Article  Google Scholar 

  6. V. G. Ladygin, in Problems in Modern Phycology (Pushchino, 2014), p. 87 [in Russian].

    Google Scholar 

  7. A. Telfer, Photochem. Photobiol. Sci. 4, 950 (2005).

    Article  Google Scholar 

  8. I. Domonkos, M. Kis, Z. Gombos, and B. Ughy, Progr. Lipid Res. 52, 539 (2013).

    Article  Google Scholar 

  9. K. Kiodawska, M. Przemysiaw, M. Kis, et al., Acta Biochim. Pol. 59 (1), 87 (2009).

    Google Scholar 

  10. A. E. Solovchenko and M. N. Merzlyak, Optical Screening As a Photoprotective Mechanism in Plants (ALitera, Moscow, 2010) [in Russian].

    Google Scholar 

  11. S. Steiger, L. Schäfer, and G. J. Sandmann, Photochem. Photobiol. B: Biol. 52, 14 (1999).

    Article  Google Scholar 

  12. H. A. Frank, A. J. Young, G. Britton, and R. J. Cogdell, The Photochemistry of Carotenoids, Vol. 8 (Springer Science & Business Media, New York, 2006).

    Google Scholar 

  13. G. N. Smolikova and S. S. Medvedev, Russ. J. Plant Physiol. 62 (1), 1 (2015).

    Article  Google Scholar 

  14. A. V. Ruban, A. A. Pascali., B. Robert, and P. Horton, J. Biol. Chem. 276 (27), 24862 (2001).

    Article  Google Scholar 

  15. W. L. Liu, Z. G. Wang, Z. R. Zheng, et al., J. Phys. Chem. A 112, 10580 (2008).

    Article  Google Scholar 

  16. R. Withnall, B. Z. Chowdhry, J. Silver, et al., Spectrochim. Acta A 59, 2207 (2003).

    Article  ADS  Google Scholar 

  17. M. T. A. Alexandre, K. Gundermann, and A. A. Pascal, Photosynth. Res. 119, 273 (2014).

    Article  Google Scholar 

  18. J. C. Merlin, Pure Appl. Chem. 57 (5), 785 (1985).

    Article  Google Scholar 

  19. C. Ilioaia, M. P. Johnson, and C. D. P. Duffy, J. Biol. Chem. 286 (1), 91 (2011).

    Article  Google Scholar 

  20. B. Szalontai, Cs. Bagyinka, and L. I. Horváth, Biochem. Biophys. Res. Commun. 76 (3), 619 (1977).

    Article  Google Scholar 

  21. E. V. Tyutyaev, V. V. Shutova, G. V. Maksimov, and Ch. N. Radenovich, Fiziol. Rast. Genet. 47 (2), 147 (2015).

    Google Scholar 

  22. W. Grudzinski, E. Janik, J. Bednarska, et al., J. Phys. Chem. 120 (19), 4373 (2016). doi 10.1021/acs.jpcb.6b01641

    Article  Google Scholar 

  23. J. Bou-Torrent, G. Toledo-Ortiz, M. Ortiz-Alcaide, et al., Plant Physiol. 169, 1584 (2015).

    Google Scholar 

  24. S. Matsubara, Ch. Yi-Chun, R. Caliandro, et al., J. Photochem. Photobiol. B: Biol. 104, 271 (2011).

    Article  Google Scholar 

  25. A. V. Ruban, A. A. Pascali, B. Robert, and P. Horton, J. Biol. Chem. 276 (27), 24862 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shutova.

Additional information

Original Russian Text © V.V. Shutova, E.V. Tyutyaev, T.V. Veselova, V.V. Choob, G.V. Maksimov, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 889–895.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutova, V.V., Tyutyaev, E.V., Veselova, T.V. et al. Dark adaptation and conformations of carotenoids in the cells of Cladophora aegagropila (L). Rabenh.. BIOPHYSICS 62, 728–733 (2017). https://doi.org/10.1134/S0006350917050207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050207

Keywords

Navigation