Skip to main content
Log in

The stability of the pheromones of xylophagous insects to environmental factors: An evaluation by quantum chemical analysis

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The ground and excited states of the pheromone molecules produced by xylophagous insects (the bark beetle Ips typographus L., the black fir sawyer beetle Monochamus urussovi Fisch., and the black pine sawyer M. galloprovincialis Oliv.) were modeled using a quantum chemical method utilizing DFT (density functional theory) with the B3LYP functional. The absorption wavelengths (energies) and dipole moments were calculated; the transitions of electrons from occupied to empty molecular orbitals were considered. The computed data were used to assess the stability of pheromone molecules exposed to environmental factors, such as solar radiation and humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Lebedev, V. A. Minyailo, and Yu. B. Pyatnova, Insect Pheromones (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. F. Schlyter, G. Birgersson, and A. Leufven, J. Chem. Ecol. 15 (8), 2263 (1989).

    Article  Google Scholar 

  3. J. Bergmann, L. Reyes-Garcia, C. Ballesteros, et al., Neotrop. Entomol. 45 (4), 351 (2016).

    Article  Google Scholar 

  4. S. Quarrell and N. W. Davies, Chemoecology 26 (5), 183 (2016). doi 10.1007/s00049-016-0216-y

    Article  Google Scholar 

  5. Z. Zhang and T. Zhang, Chemoecology 26 (1), 25 (2016).

    Article  Google Scholar 

  6. S. M. Seo and J. M. Lee, J. Porous Mater. 23 (2), 557 (2016).

    Article  Google Scholar 

  7. P. Landolt and Q.-H. Zhang, J. Chem. Ecol. 42, 655 (2016). doi 10.1007/s10886-016-0721-z

    Article  Google Scholar 

  8. C. Ioriatti and A. Lucchi, J. Chem. Ecol. 42 (7), 57 (2016). doi 10.1007/s10886-016-0722-y

    Article  Google Scholar 

  9. K. A. Hamby and D. E. Bellamy, J. Pest Sci. 89 (3), 605 (2016).

    Article  Google Scholar 

  10. V. Party, C. Hanot, D. Sch. Busser, et al., PLOS ONE 8 (1), e52897 (2013). doi 10.1371/journal. pone.0052897

    Article  ADS  Google Scholar 

  11. A. V. Kovalev and P. E. Volkova (Tsikalova), Sib. Lesn. Zh. 3, 93 (2015).

    Google Scholar 

  12. K.-E. Kaissling, J. Comp. Physiol. A 199 (11), 879 (2013).

    Article  Google Scholar 

  13. H. Lei and H.-Y. Chiu, J. Comp. Physiol. A 199 (11), 997 (2013).

    Article  Google Scholar 

  14. www.pherobase.com.

  15. V. D. Ivanov, Soros. Obraz. Zh. 6, 29 (1998).

    Google Scholar 

  16. L. J. Wadhams, M. E. Angst, and M. M. Blight, J. Chem. Ecol. 8, 477 (1982).

    Article  Google Scholar 

  17. J. C. Dickens, J. Chem. Ecol. 10, 1759 (1984).

    Article  Google Scholar 

  18. J. C. Dickens, Entomol. Exp. Appl. 52, 191 (1989).

    Article  Google Scholar 

  19. F. N. Tomilin, O. V. Osina, A. A. Kuzubov, et al., Biophysics (Moscow) 56 (4), 695 (2011).

    Article  Google Scholar 

  20. R.-W. Shi and F. Liu, J. Mol. Model. 22, 140 (2016).

    Article  Google Scholar 

  21. V. G. Sukhovol’skii, F. N. Tomilin, P. V. Artyushenko, and P. E. Tsikalova, Sib. Lesn. Zh. 3, 67 (2016).

    Google Scholar 

  22. A. Bakke and L. Riege, in Insect Suppression with Controlled Release Pheromone Systems, Ed. by A. F. Kydonieus and M. Beroza (CRC Press, Boca Raton, FL, 1982), Vol. 2, pp. 3–15.

    Google Scholar 

  23. A. Bakke, O. Austara, and H. Pettersen, Med. Norsk Inst. Skogsforskn. 33 (6), 255 (1977).

    Google Scholar 

  24. A. D. Maslov, The European Spruce Bark Beetle and Spruce Forest Die-off (VNIILM, Moscow, 2010) [in Russian].

    Google Scholar 

  25. A. S. Isaev, A. S. Rozhkov, and V. V. Kiselev, The Fir Sawyer Beetle (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  26. P. M. Naves, E. M. de Sousa, and J. A. Quartau, J. Appl. Entomol. 131, 669 (2007).

    Article  Google Scholar 

  27. J. D. Allison, J. H. Borden, R. L. McIntosh, et al., J. Chem. Ecol. 27, 633 (2001).

    Article  Google Scholar 

  28. N. Nabil, State of the Art on the Monitoring of the Pine Wood Nematode–PWN (Bursaphelenchus xylophilus) and its Insect Vector (Monochamus galloprovincialis) in Europe (Institut Européen de la forét cultivée EFIATLANTIC, 2009).

    Google Scholar 

  29. A. Kolk, The Atlas of Forest Insect Pests (Polish Forest Research Institute, Warszawa, 1996).

    Google Scholar 

  30. E. N. Pal’nikova, I. V. Sviderskaya, and V. G. Sukhovol’skii, The Bordered White in Siberian Forests (Nauka, Novosibirsk, 2002) [in Russian].

    Google Scholar 

  31. A. N. Nesmeyanov, Fundamentals of Organic Chemistry (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  32. V. V. Plemenkov, The Chemistry of Isoprenoids (Altai State Univ., Barnaul, 2007) [in Russian].

    Google Scholar 

  33. G. Birgersson, F. Schlyter, J. Löfqvist, and G. Bergström, J. Chem Ecol. 10 (7), 1029 (1984).

    Article  Google Scholar 

  34. E. Pettersson and W. Boland, Chemoecology 13, 27 (2003).

    Article  Google Scholar 

  35. J. A. Pajares, G. Alvarez, F. Ibeas, et al., J. Chem. Ecol. 36 (6), 570 (2010).

    Article  Google Scholar 

  36. F. Ibeas, J. J. Diez, and J. A. Pajares, J. Insect Behav. 21, 101 (2008).

    Article  Google Scholar 

  37. F. Ibeas, D. Gallego, J. J. Diez, et al., J. Appl. Entomol. 131, 13 (2007).

    Article  Google Scholar 

  38. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  39. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  40. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).

    Article  ADS  Google Scholar 

  41. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  42. E. Runge, and E. K. U. Gross, Phys. Rev. Lett. 52 (12), 997 (1984).

    Article  ADS  Google Scholar 

  43. M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76 (8), 1212 (1996).

    Article  ADS  Google Scholar 

  44. L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 106 (3), 1063 (1997).

    Article  ADS  Google Scholar 

  45. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 123, 124107 (2005).

    Article  ADS  Google Scholar 

  46. J. Tirado-Rives and W. L. Jorgensen, J. Chem. Theory Comput. 4, 297 (2008).

    Article  Google Scholar 

  47. K. L. Schuchardt, B. T. Didier, T. Elsethagen, et al., J. Chem. Inf. Model. 47 (3), 1045 (2007).

    Article  Google Scholar 

  48. D. Feller, J. Comp. Chem. 17 (13), 1571 (1996).

    Article  Google Scholar 

  49. P. V. Artyushenko, F. N. Tomilin, A. A. Kuzubov, et al., J. Struct. Chem. 57 (2), 287 (2016).

    Article  Google Scholar 

  50. J. Liu and R.-W. Shi, J. Environ. Entomol. 2, 424 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Artyushenko.

Additional information

Original Russian Text © P.V. Artyushenko, F.N. Tomilin, A.A. Kuzubov, S.G. Ovchinnikov, P.E. Tsikalova, T.M. Ovchinnikova, V.G. Soukhovolsky, 2017, published in Biofizika, 2017, Vol. 62, No. 4, pp. 657–664.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyushenko, P.V., Tomilin, F.N., Kuzubov, A.A. et al. The stability of the pheromones of xylophagous insects to environmental factors: An evaluation by quantum chemical analysis. BIOPHYSICS 62, 532–538 (2017). https://doi.org/10.1134/S0006350917040029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917040029

Keywords

Navigation