Skip to main content
Log in

The interaction of superoxide radicals with active dicarbonyl compounds

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The interaction of superoxide radical anion (O2 •−) with active dicarbonyls (methylglyoxal, glyoxal, and malonic dialdehyde) was studied. It was demonstrated that glyoxal and methylglyoxal inhibited superoxide-dependent accumulation of formazan; however, malonic dialdehyde stimulated this process. The formation of O2 •− in these experiments occurred during the decomposition of the SOTS-1 azo initiator. On the other hand, all of the studied dicarbonyls in this system of O2 •− generation competed for superoxide with the TIR ON spin trap. These compounds also inhibited luminal-dependent chemiluminescence during the AIBN azo initiator-induced peroxidation of liposomes from the egg phosphatidylcholine. A mechanism for the antiradical and antioxidant effects of the studied dicarbonyls, assuming the production of free radical intermediates in their reactions with O2 •− or its protonated form, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOTS-1:

bis(4-carboxybenzyl) hyponitrite

TIR ON:

sodium 4,5-dihydroxybenzene-1,3-disulphonate

AIBN:

azobisbutyronitrile

References

  1. T. Ishii, S. Kumazawa, T. Sakurai, et al., Chem. Res. Toxicol. 19, 122 (2006).

    Article  Google Scholar 

  2. C. G. Schalkwijk, Immun. Endocr. Metab. Agents Med. Chem. 7, 57 (2007).

    Article  Google Scholar 

  3. P. J. Thornalley, Drug Metab. Drug Interact. 23, 125 (2008).

    Article  Google Scholar 

  4. K. M. Desai and L. Wu, Drug. Metab. Drug. Interact. 23, 151 (2008).

    Article  Google Scholar 

  5. P. B. L. Pun and M. P. Murphy, Int. J. Cell Biol. 2012, 1 (2012).

    Article  Google Scholar 

  6. M. Katakura, M. Hashimoto, Y. Tanabe, and O. Shido, Med. Gas Res. 2, 1 (2012).

    Article  Google Scholar 

  7. V. U. Chavan and R. R. Melinkeri, Natl. J. Commun. Med. 4, 294 (2013).

    Google Scholar 

  8. V. Z. Lankin, G. G. Konovalova, A. K. Tikhaze, et al., Mol. Cell. Biochem. 395, 241 (2014).

    Article  Google Scholar 

  9. M.-S. Hsieh and W.-H. Chan, Int. J. Mol. Sci. 10, 1445 (2009).

    Article  Google Scholar 

  10. K. B. Shumaev, S. A. Gubkina, E. M. Kumskova, et al., Biochemistry (Moscow) 74, 461 (2009).

    Article  Google Scholar 

  11. J. F. Turrens, J. Physiol. 552, 335 (2003).

    Article  Google Scholar 

  12. J. Massari, R. Tokikawa, L. Zanolli, et al., Chem. Res. Toxicol. 23, 1762 (2010).

    Article  Google Scholar 

  13. Y. Matsumura, A. Iwasawa, T. Kobayashi, et al., J. Clin. Biochem. Nutr. 52, 128 (2013).

    Article  Google Scholar 

  14. A. Szent-Gyorgyi, L. G. Egyud, and J. A. McLaughlin, Science 155, 539 (1967).

    Article  ADS  Google Scholar 

  15. C. Beauchamp and I. Fridovich, Anal. Biochem. 44, 276 (1971).

    Article  Google Scholar 

  16. M. I. Heller and P. L. Croot, Anal. Chim. Acta 667, 1 (2010).

    Article  Google Scholar 

  17. C. L. Greenstock and R. W. Miller, Biochim. Biophys. Acta 396, 11 (1975).

    Article  Google Scholar 

  18. O. V. Korkina and E. K. Ruuge, Biophysics (Moscow) 45 (4), 676 (2000).

    Google Scholar 

  19. H. U. Bergmeyer, K. Gawehn, and M. Grassl, in Methods of Enzymatic Analysis, 2nd ed., Ed. by H. U. Bergmeyer, (Academic Press, New York, 1974), Vol. 1, pp. 521–522.

    Google Scholar 

  20. L. J. Marnett, M. J. Bienkowski, M. Raban, and M. A. Tuttle, Anal. Biochem. 99, 458 (1979).

    Article  Google Scholar 

  21. C. Achilli, S. Grandi, A. Ciana, et al., Chem. Papers 68, 662 (2014).

    Article  Google Scholar 

  22. J. R. Baker, D. V. Zyzak, S. R. Thorpe, and J. W. Baynes, Clin. Chem. 40, 1950 (1994).

    Google Scholar 

  23. V. Z. Lankin, G. G. Konovalova, A. K. Tikhaze, et al., in Handbook of Lipoprotein Research (Nova Sci. Publ., New York, 2010), pp. 85–107.

    Google Scholar 

  24. W. M. Tolles and D. W. Moore, J. Chem. Phys. 46, 2102 (1967).

    Article  ADS  Google Scholar 

  25. C. Thomson, J. Biol. Phys. 7, 39 (1979).

    Article  Google Scholar 

  26. C. Mottley, R. E. Robinson, and R. P. Mason, Arch. Biochem. Biophys. 289, 153 (1991).

    Article  Google Scholar 

  27. I. Hermans, J. F. Müller, T. L. Nguyen, et al., J. Phys. Chem. A 109, 4303 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Shumaev.

Additional information

Original Russian Text © K.B. Shumaev, V.Z. Lankin, G.G. Konovalova, A.K. Tikhaze, E.K. Ruuge, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 237–242.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumaev, K.B., Lankin, V.Z., Konovalova, G.G. et al. The interaction of superoxide radicals with active dicarbonyl compounds. BIOPHYSICS 62, 172–176 (2017). https://doi.org/10.1134/S0006350917020245

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020245

Keywords

Navigation