Skip to main content
Log in

Structural adaptation of active center channels of octaheme nitrite reductases from the haloalkaliphilic bacteria Thioalkalivibrio nitratireducens to a proton deficit

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Study of the adaptation mechanisms of proteins from extremophiles paves the way for the development of new biocatalysts that are resistant to extreme conditions. Here, we studied the structural adaptation of active center channels of octaheme nitrite reductase from the haloalkophilic bacterium Thioalkalivibrio nitratireducens (TvNiR) to high pH. Comparative analysis of the structures of octaheme nitrite reductases adapted to different environmental conditions revealed unique adaptation mechanisms for TvNiR, which play an important role in binding rare protons and substrate and product migration in the active-site channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DSC:

differential scanning calorimetry

СD:

circular dichroism

ONR:

octaheme nitrite reductase

GsNiR:

ONR from non-halophilic bacterium Geobacter sulfurreducens

TvNiR:

ONR from haloalkaliphilic bacterium Thioalkalivibrio nitratireducens

References

  1. P. L. Kastritis, N. C. Papandreou, and S. J. Hamodrakas, Int. J. Biol. Macromol. 41 (4), 447 (2007).

    Article  Google Scholar 

  2. S. Fujinami and M. Fujisawa, Environ. Technol. 31 (8–9), 845 (2010).

    Article  Google Scholar 

  3. E. V Pikuta, R. B. Hoover, and J. Tang, Crit. Rev. Microbiol. 33 (3), 183 (2007).

    Article  Google Scholar 

  4. E. Ebrahimie, M. Ebrahimi, N. R. Sarvestani, and M. Ebrahimi, Saline Systems 7 (1), 1 (2011).

    Article  Google Scholar 

  5. D. Y. Sorokin, M. S. Muntyan, A. N. Panteleeva, and G. Muyzer, Int. J. Syst. Evol. Microbiol. 62 (8), 1884 (2012).

    Article  Google Scholar 

  6. M. Moshfegh, A. R. Shahverdi, G. Zarrini, and M. A. Faramarzi, Extremophiles 17 (4), 677 (2013).

    Article  Google Scholar 

  7. A. P. Dubnovitsky, E. G. Kapetaniou, and A. C. Papageorgiou, Protein Sci. 14, 97 (2005).

    Article  Google Scholar 

  8. K. Manikandan, A. Bhardwaj, N. Gupta, et al., Protein Sci. 15 (8), 1951 (2006).

    Article  Google Scholar 

  9. Y. Zhao, Y. Zhang, Y. Cao, J. Qi, et al., PLoS ONE 6 (1), e14608 (2011).

    Article  ADS  Google Scholar 

  10. T. Shirai, H. Ishida, J. Noda, et al., J. Mol. Biol. 310 (5), 1079 (2001).

    Article  Google Scholar 

  11. D. Y. Sorokin, Int. J. Syst. Evol. Microbiol. 53 (6), 1779 (2003).

    Article  Google Scholar 

  12. T. Tikhonova, A. Tikhonov, A. Trofimov, et al., FEBS J. 279 (21), 4052 (2012).

    Article  Google Scholar 

  13. A. A. Filimonenkov, R. A. Zvyagilskaya, T. V. Tikhonova, and V. O. Popov, Biochemistry 75 (6), 744 (2010).

    Google Scholar 

  14. K. M. Polyakov, K. M. Boyko, T. V Tikhonova, et al., J. Mol. Biol. 389 (5), 846 (2009).

    Article  Google Scholar 

  15. A. A. Trofimov, K. M. Polyakov, T. V Tikhonova, et al., Acta Crystallogr. D. Biol. Crystallogr. 68 (2), 144 (2012).

    Article  Google Scholar 

  16. M. Biasini, S. Bienert, A. Waterhouse, et al., Nucleic Acids Res. 42 (Web Server issue), W252 (2014).

    Google Scholar 

  17. C. Notredame, D. G. Higgins, and J. Heringa, J. Mol. Biol. 302 (1), 205 (2000).

    Article  Google Scholar 

  18. A. Fiser and A. Sali, Methods Enzymol. 374, 461 (2003).

    Article  Google Scholar 

  19. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem. 25 (13), 1605 (2004).

    Article  Google Scholar 

  20. R. Salomon-Ferrer, A. W. Götz, D. Poole, et al., J. Chem. Theory Comput. 9 (9), 3878 (2013).

    Article  Google Scholar 

  21. M. L. Hekkelman, T. A. H. Te Beek, S. R. Pettifer, et al., Nucleic Acids Res. 38 (Web Server issue), W719 (2010).

    Article  Google Scholar 

  22. V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale (CRC Press, Boca Raton, FL, 2013), pp. 283–307.

    Google Scholar 

  23. T. N. Petersen, S. Brunak, G. von Heijne, and H. Nielsen, Nat. Methods 8 (10), 785 (2011).

    Article  Google Scholar 

  24. K. G. Tina, R. Bhadra, and N. Srinivasan, Nucleic Acids Res. 35 (Web Server issue), 473 (2007).

    Article  Google Scholar 

  25. O. S. Smart, J. G. Neduvelil, X. Wang, and B. A. Wallace, J. Mol. Graph. 14 (6), 354 (1996).

    Article  Google Scholar 

  26. G. Zhang, L. Zhang, D. Yang, et al., Acta Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 72 (1), 20 (2016).

    Article  Google Scholar 

  27. O. Einsle, A. Messerschmidt, R. Huber, et al., J. Am. Chem. Soc. 124 (39), 11737 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Popinako.

Additional information

The article was translated by the authors.

Original Russian Text © A.V. Popinako, T.V. Tikhonova, M.Yu. Antonov, K.V. Shaitan, V.O. Popov, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 284–289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popinako, A.V., Tikhonova, T.V., Antonov, M.Y. et al. Structural adaptation of active center channels of octaheme nitrite reductases from the haloalkaliphilic bacteria Thioalkalivibrio nitratireducens to a proton deficit. BIOPHYSICS 62, 214–219 (2017). https://doi.org/10.1134/S0006350917020191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020191

Keywords

Navigation