Skip to main content
Log in

Morphology and dehydration mechanism of transition metal sulfate heptahydrates

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Processes and thermodynamic parameters of dehydration of transition metal (Ni, Co, and Fe) sulfate heptahydrate crystals grown in aqueous solutions have been investigated by optical thermomicroscopy, X-ray analysis, and differential scanning calorimetry. Values of temperature and specific heat of the first stage of dehydration have been determined, as well as the conditions under which the process was reversible. The morphology of the common topochemical reaction, as well as the mechanism of this reaction, has been characterized. The dehydration process has been shown to depend on multiple physical parameters and to consist in the growth of non-oriented crystals of the new phase with concomitant exudation of the water of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, Proc. SPIE, No. 5611, 244 (2004).

    Article  ADS  Google Scholar 

  2. D. Caputo, G. Cesare, F. Irrera, and F. Palma, IEEE Trans. Electron Devices 43 (9), 1351 (2004).

    Article  ADS  Google Scholar 

  3. W. E. Garner, in Chemistry of the Solid State, Ed. by W. E. Garner (Butterworth, London, 1955; IIL, Moscow, 1961), p. 292.

    Google Scholar 

  4. L. V. Soboleva and L. F. Kirpichnikova, Crystallogr. Rep. 46 (2), 306 (2001).

    Article  ADS  Google Scholar 

  5. S. Sarig, Thermochim. Acta 7, 297 (1973).

    Article  Google Scholar 

  6. D. Nicholls, Comprehensive Inorganic Chemistry (Pergamon, Oxford, 1973).

    Google Scholar 

  7. G. Rabbering, J. Wanrooy, and A. Schuijff, Thermochim. Acta 12, 57 (1975).

    Article  Google Scholar 

  8. M. Friesen, H. M. Burt, and A. G. Mitchell, Thermochim. Acta 41, 167 (1980).

    Article  Google Scholar 

  9. R. Wu, M. Oliazaden, and A. Alfantazi, Appl. Electrochem. 33, 1043 (2003).

    Article  Google Scholar 

  10. S. Genbo, H. Youping, L. Zhengdong, and J. Rihong, J. Cryst. Growth 213, 99 (2000).

    Article  Google Scholar 

  11. N. Z. Lyakhov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 9 (4), 5 (1980).

    Google Scholar 

  12. A. A. Sidel’nikov, A. P. Chupakhin, N. Z. Lyakhov, and V. V. Boldyrev, Dokl. Akad. Nauk. SSSR 258 (1), 158 (1981).

    Google Scholar 

  13. A. P. Chupakhin, A. A. Sidel’nikov, V. V. Boldyrev, et al., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 12 (5), 3 (1981).

    Google Scholar 

  14. A. P. Chupakhin, A. A. Sidel’nikov, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. 12 (5), 12 (1981).

    Google Scholar 

  15. N. N. Petropavlov, in Extended Abstr. 6th Int. Conf. on Crystal Growth (Moscow, 1980), Vol. 4, pp. 401–403 [in Russian].

    Google Scholar 

  16. N. N. Petropavlov, Zh. Fiz. Khim. 69 (1), 52 (1995).

    Google Scholar 

  17. N. N. Petropavlov, J. Crystal Growth 52, 889 (1981).

    Article  ADS  Google Scholar 

  18. N. N. Petropavlov, I. G. Tsygankova, and L. A. Teslenko, Kristallografiya 33 (6), 1433 (1988).

    Google Scholar 

  19. Thermal Analysis. A Collection of Articles Reprinted from Perkin-Elmer,'s Intstrument News (Order No. MA-8a. 1975).

  20. ASTM Diffraction Data Card.

  21. A. I. Kitaigorodskii, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  22. V. N. Turlakov, L. I. D’yakonov, and A. I. Sheinkman, Zh. Prikl. Khim. 54 (3), 530 (1981).

    Google Scholar 

  23. B. H. O’Connor and D. H. Dale, Acta Cryst. 21, 705 (1966).

    Article  Google Scholar 

  24. A. Zalkin, H. Ruben, and D. H. Templeton, Acta Cryst. 15, 1219 (1962).

    Article  Google Scholar 

  25. W. H. Baur, Acta Cryst. 17, 1167 (1964).

    Article  Google Scholar 

  26. S. Aslanian and Ch. Balarew, Kristall und Technik 12 (5), 435 (1977).

    Article  Google Scholar 

  27. W. Mac-Crown, in Physics and Chemistry of the Organic Solid State, Ed. by D. Fox (Interscience Publ. New York, 1963; Mir, Moscow, 1968), p. 435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Fesenko Jr..

Additional information

Original Russian Text © N.N. Petropavlov, G.M. Chalaya, I.G. Cygankova, A.L. Ilinskiy, E.L. Gagarinskiy, E.E. Fesenko, Jr., 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 221–226.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petropavlov, N.N., Chalaya, G.M., Cygankova, I.G. et al. Morphology and dehydration mechanism of transition metal sulfate heptahydrates. BIOPHYSICS 62, 158–163 (2017). https://doi.org/10.1134/S000635091702018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091702018X

Keywords

Navigation