Skip to main content
Log in

Analysis of the expression levels of genes that encode cytoskeletal proteins in Drosophila melanogaster larvae during micro- and hypergravity effect simulations of different durations

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The goal of this study was to find genes that encode cytoskeletal proteins that are potential candidates for the role of triggers in cell mechanosensitivity in the fruit fly. Centrifugation was used to simulate the hypergravity effects (2g group); the constantly changing orientation of the larvae in the gravity field was performed in order to simulate the effects of microgravity (0g group) for 1.5, 6, 12 and 24 h. mRNA levels of different genes that encode the components of both tubulin and actin cytoskeleton were assessed by qRT-PCR. In the 0g group the mRNA levels of beta-tubulin and Msps were reduced after 1.5 h of the exposure and remained unchanged until 12 h, while they exceeded the control level after 24 h. The mRNA level of chaperonin containing T-complex 1 polypeptide subunits recovered earlier: after 6 and 12 h of the microgravity exposure. At the same time, the hypergravity effect led to more significant changes in the mRNA level of TCP1 complex components compared with those of tubulin and Msps. The mRNA level of beta-actin isoforms under micro- and hypergravity was decreased up to 12 h of the exposure, however, it remained reduced under microgravity conditions, while it recovered (Act87E) and even exceeded (Act57B) the reference level under hypergravity conditions. The mRNA level of supervillin was almost unchanged. Under microgravity conditions the mRNA level of fimbrin was decreased (it recovered by the 24 h time point), while the mRNA level of alpha-actinin was significantly increased by the 12 h time point of the exposure and after 24 h it was reduced to the control level. In contrast, under hypergravity conditions the mRNA level of fimbrin initially increased, and after 24 h it dropped below the control, while the mRNA level of alpha-actinin was significantly reduced, and after 24 h it was higher than the reference level. Similar results were obtained earlier in the experiments in rodents, but similar dynamics were observed for alpha-actinin isoforms 1 and 4, although no changes were observed for fimbrin. Since Drosophila melanogaster has no alpha-actinin isoform 4, it is hypothesized that its role in the cell is played by fimbrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Dubinin and E. Vaulina, Life Sci. Space Res. 14, 47 (1976).

    Google Scholar 

  2. M. Ross, Adv. Space Res. 4, 305 (1984).

    Article  ADS  Google Scholar 

  3. M. G. Tairbekov, V. Klimovitskii, and V. S. Oganov, Izv. Akad. Nauk, Ser. Biol. 5, 517 (1997).

    Google Scholar 

  4. G. Albrecht-Buehler, ASGSB Bull. 5 (2), 3 (1992).

    Google Scholar 

  5. A. Cogoli, J. Gravit. Physiol. 3 (1), 1 (1996).

    ADS  Google Scholar 

  6. S. J. Pardo, M. J. Patel, M. C. Sykes, et al., Am. J. Physiol. Cell Physiol. 288 (6), C1211 (2005).

    Article  Google Scholar 

  7. J. G. Gershovich, N. A. Konstantinova, P. M. Gershovich, and L. B. Buravkova, J. Grav. Physiol. 14 (1), 133 (2007).

    Google Scholar 

  8. L. B. Buravkova, Yu. A. Romanov, N. A. Konstantinova, et al., Acta Astronaut. 63, 603 (2008).

    Article  ADS  Google Scholar 

  9. P. M. Gershovich, J. G. Gershovich, and L. B. Buravkova, J. Grav. Physiol. 15 (1), 203 (2008).

    Google Scholar 

  10. D. Sakar, T. Nagaya, K. Koga, and H. Seo, Cells Environ. Med. 43 (1), 22 (1999).

    Google Scholar 

  11. B. M. Uva, M. A. Masini, M. Sturla, et al., Brain Res. 934, 132 (2002).

    Article  Google Scholar 

  12. S. Gaboyard, M. P. Blachard, B. T. Travo, et al., NeuroReport 13 (16), 2139 (2002).

    Article  Google Scholar 

  13. P. A. Plett, R. Abonour, S. M. Frankovitz, and C. M. Orschell, Exp. Hematol. 32, 773 (2004).

    Article  Google Scholar 

  14. M. A. Kacena, P. Todd, and W. J. Landis, In Vitro Cell Dev. Biol.–Animal 39 (10), 454 (2004).

    Article  Google Scholar 

  15. S. J. Crawford-Young, Int. J. Dev. Biol. 50 (2–3), 183 (2006).

    Article  Google Scholar 

  16. H. Schatten, M. L. Lewis, and A. Chakrabari, Acta Astronaut. 49 (3–10), 399 (2001).

    Article  ADS  Google Scholar 

  17. M. Zayzafoon, W. E. Gathings, and J. M. McDonald, Endocrinology 145 (5), 2421 (2004).

    Article  Google Scholar 

  18. V. E. Meyers, M. Zayzafoon, S. R. Gonda, et al., J. Cell Biochem. 93 (4), 697 (2004).

    Article  Google Scholar 

  19. V. E. Meyers, M. Zayzafoon, J. T. Douglas, and J. M. McDonald, J. Bone Miner. Res. 20 (10), 1858 (2005).

    Article  Google Scholar 

  20. Z. Q. Dai, R. Wang, S. K. Ling, et al., Cell Prolif. 40 (5), 671 (2007).

    Article  Google Scholar 

  21. Z. Pan, J. Yang, C. Guo, et al., Stem Cell Dev. 17 (4), 795 (2008).

    Article  Google Scholar 

  22. I. V. Ogneva, J. Biomed. Biotechnol. 2013, Article ID 598461 (2013).

    Google Scholar 

  23. I. V. Ogneva, N. S. Biryukov, T. A. Leinsoo, and I. M. Larina, PLOS ONE 9 (4), e96395 (2014).

    Article  ADS  Google Scholar 

  24. I. V. Ogneva, M. V. Maximova, and I. M. Larina, J. Appl. Physiol. 116 (10), 1315 (2014).

    Article  Google Scholar 

  25. I. V. Ogneva, V. Gnyubkin, N. Laroche, et al., J. Appl. Physiol. 118, 613 (2015).

    Article  ADS  Google Scholar 

  26. I. V. Ogneva and N. S. Biryukov, PLOS ONE 11 (4), e0153650 (2016).

    Article  Google Scholar 

  27. K. J. Livak and T. D. Schmittgen, Methods 25, 402 (2001).

    Article  Google Scholar 

  28. L. Cassimeris and J. Morabito, Mol. Biol. Cell. 15, 1580 (2004).

    Article  Google Scholar 

  29. F. Gergely, V. M. Draviam, and J. W. Raff, Genes Dev. 17, 336 (2013).

    Article  Google Scholar 

  30. K. M. Knee, O. A. Sergeeva, and J. A. King, Cell Stress Chaperones 18, 137 (2013).

    Article  Google Scholar 

  31. M. B. Yaffe, G. W. Farr, D. Miklos, et al., Nature 358, 245 (1992).

    Article  ADS  Google Scholar 

  32. S. Yokota, H. Yanagi, T. Yura, and H. Kubota, Eur. J. Biochem, 268, 4664 (2001).

    Article  Google Scholar 

  33. K.-A. Won, R. J. Schumacher, G. W. Farr, et al., Mol. Cell Biol. 18 (12), 7584 (1998).

    Article  Google Scholar 

  34. J. L. Crowley, T. C. Smith, Z. Fang, et al., Mol. Biol. Cell 20 (3), 948 (2009).

    Article  Google Scholar 

  35. K. Matsushima, M. Shiroo, H. F. Kung, and T. D. Copeland, Biochemistry 27, 3765 (1988).

    Article  Google Scholar 

  36. B. Janji, A. Giganti, V. De Corte, et al., J. Cell Sci. 119, 1947 (2006).

    Article  Google Scholar 

  37. S. Goffart, A. Franko, Ch. S. Clemen, and R. J. Wiesner, Curr. Genet. 49, 125 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ogneva.

Additional information

Original Russian Text © M.S. Kupriyanova, I.V. Ogneva, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 355–363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupriyanova, M.S., Ogneva, I.V. Analysis of the expression levels of genes that encode cytoskeletal proteins in Drosophila melanogaster larvae during micro- and hypergravity effect simulations of different durations. BIOPHYSICS 62, 278–285 (2017). https://doi.org/10.1134/S0006350917020129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020129

Keywords

Navigation