The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex

Abstract

The system of hemostasis includes coagulation of blood plasma and formation of platelet aggregate. Plasma clotting is a cascade of proteolytic reactions, triggered by the contact of blood plasma with any tissue except the normal vessel endothelium. During the contact an enzymatic complex is formed of the soluble blood plasma protein, factor VIIa, and a membrane-anchored protein, tissue factor. This complex is called extrinsic tenase; it is the key initiator of blood coagulation. The main substrates of extrinsic tenase are blood plasma factors X and IX. During the reaction they undergo proteolytic cleavage and become active serine proteases, factors Xa and IXa, respectively. Factor Xa in complex with its cofactor factor Va catalyzes formation of the key coagulation enzyme, thrombin, which leads to fibrin polymerization and plasma gelation. Although all of the proteins that participate in this process have been known for a long time, several questions remain unanswered. As an example, what is the role of the reaction surface on which the complex is formed, what is the role of membrane-bound multimeres of factor X (Xa), and in what way does the activation of the factor VII proceed? Here, we review recent theoretical and experimental works focused on the biophysical mechanisms of extrinsic tenase functioning and discuss some of these problems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. A. Panteleev, N. M. Dashkevich, and F. I. Ataullakhanov, Thromb. Res. 136, 699 (2015).

    Article  Google Scholar 

  2. 2.

    H. H. Versteeg, J. W. M. Heemskerk, M. Levi, and P. H. Reitsma, Physiol. Rev. 93, 327 (2013).

    Article  Google Scholar 

  3. 3.

    E. W. Davie and O. D. Ratnoff, Science 145, 1310 (1964).

    ADS  Article  Google Scholar 

  4. 4.

    R. G. Macfarlane, Nature 202, 498 (1964).

    ADS  Article  Google Scholar 

  5. 5.

    M. Hoffman and D. M. Monroe 3rd, Thromb. Haemost. 85, 958 (2001).

    Google Scholar 

  6. 6.

    J. H. Morrissey, H. Fakhrai, and T. S. Edgington, Cell 50, 129 (1987).

    Article  Google Scholar 

  7. 7.

    L. R. Paborsky, I. W. Caras, K. L. Fisher, and C. M. Gorman, J. Biol. Chem. 266, 21911 (1991).

    Google Scholar 

  8. 8.

    B. Osterud, A. Tindall, J. H. Brox, and J. O. Olsen, Thromb. Res. 42, 323 (1986).

    Article  Google Scholar 

  9. 9.

    T. A. Drake, J. H. Morrissey, and T. S. Edgington, Am. J. Pathol. 134, 1087 (1989).

    Google Scholar 

  10. 10.

    R. A. Fleck, L. V. Rao, S. I. Rapaport, and N. Varki, Thromb. Res. 59, 421 (1990).

    Article  Google Scholar 

  11. 11.

    S. Butenas, B. A. Bouchard, K. E. Brummel-Ziedins, et al., Blood 105, 2764 (2005).

    Article  Google Scholar 

  12. 12.

    P. L. Giesen, U. Rauch, B. Bohrmann, et al., Proc. Natl. Acad. Sci. U. S. A. 96, 2311 (1999).

    ADS  Article  Google Scholar 

  13. 13.

    V. Y. Bogdanov, V. Balasubramanian, J. Hathcock, et al., Nat. Med. 9, 458 (2003).

    Article  Google Scholar 

  14. 14.

    R. F. Zwaal, P. Comfurius, and E. M. Bevers, Biochim. Biophys. Acta 1376, 433 (1998).

    Article  Google Scholar 

  15. 15.

    J. F. McDonald, A. M. Shah, R. A. Schwalbe, et al., Biochemistry 36, 5120 (1997).

    Article  Google Scholar 

  16. 16.

    M. Koren-Michowitz, N. Rahimi-Levene, Y. Volcheck, et al., Isr. Med. Assoc. J. 8, 53 (2006).

    Google Scholar 

  17. 17.

    G. J. J. Broze and P. W. Majerus, J. Biol. Chem. 255, 1242 (1980).

    Google Scholar 

  18. 18.

    K. Kurachi and E. W. Davie, Proc. Natl. Acad. Sci. USA. 79, 6461 (1982).

    ADS  Article  Google Scholar 

  19. 19.

    S. P. Leytus, D. W. Chung, W. Kisiel, et al., Proc. Natl. Acad. Sci. USA. 81, 3699 (1984).

    ADS  Article  Google Scholar 

  20. 20.

    C. Vermeer, Biochem. J. 266, 625 (1990).

    Article  Google Scholar 

  21. 21.

    G. L. Nelsestuen, W. Kisiel, and R. G. Di Scipio, Biochemistry 17, 2134 (1978).

    Article  Google Scholar 

  22. 22.

    C. D. McCallum, R. C. Hapak, P. F. Neuenschwander, et al., J. Biol. Chem. 271, 28168 (1996).

    Article  Google Scholar 

  23. 23.

    E. J. Husten, C. T. Esmon, and A. E. Johnson, J. Biol. Chem. 262, 12953 (1987).

    Google Scholar 

  24. 24.

    S. Yegneswaran, G. M. Wood, C. T. Esmon, and A. E. Johnson, J. Biol. Chem. 272, 25013 (1997).

    Article  Google Scholar 

  25. 25.

    C. M. Colina, D. Venkateswarlu, R. Duke, et al., J. Thromb. Haemost. 4, 2726 (2006).

    Article  Google Scholar 

  26. 26.

    S. H. Qureshi, L. Yang, S. Yegneswaran, and A. R. Rezaie, Biochem. J. 407, 427 (2007).

    Article  Google Scholar 

  27. 27.

    D. Venkateswarlu, L. Perera, T. Darden, and L. G. Pedersen, Biophys. J. 82, 1190 (2002).

    Article  Google Scholar 

  28. 28.

    Y. Z. Ohkubo and E. Tajkhorshid, Structure 16, 72 (2008).

    Article  Google Scholar 

  29. 29.

    G. L. Nelsestuen and M. Broderius, Biochemistry 16, 4172 (1977).

    Article  Google Scholar 

  30. 30.

    G. A. Cutsforth, R. N. Whitaker, J. Hermans, and B. R. Lentz, Biochemistry 28, 7453 (1989).

    Article  Google Scholar 

  31. 31.

    G. van Dieijen, G. Tans, J. van Rijn, et al., Biochemistry 20, 7096 (1981).

    Article  Google Scholar 

  32. 32.

    A. W. Shaw, V. S. Pureza, S. G. Sligar, and J. H. Morrissey, J. Biol. Chem. 282, 6556 (2007).

    Article  Google Scholar 

  33. 33.

    V. J. Bom and R. M. Bertina, Biochem. J. 265, 327 (1990).

    Article  Google Scholar 

  34. 34.

    R. Bach, R. Gentry, and Y. Nemerson, Biochemistry 25, 4007 (1986).

    Article  Google Scholar 

  35. 35.

    D. P. O’Brien, G. Kemball-Cook, A. M. Hutchinson, et al., Biochemistry 33, 14162 (1994).

    Article  Google Scholar 

  36. 36.

    L. V. Rao and S. I. Rapaport, Proc. Natl. Acad. Sci. USA. 85, 6687 (1988).

    ADS  Article  Google Scholar 

  37. 37.

    P. Sen, P. F. Neuenschwander, U. R. Pendurthi, and L. V. M. Rao, Blood Coagul. Fibrinolysis 21, 376 (2010).

    Article  Google Scholar 

  38. 38.

    H. Mei, Y. Hu, H. Wang, et al., J. Huazhong Univ. Sci. Technol. Med. Sci. 30, 42 (2010).

    Article  Google Scholar 

  39. 39.

    K. Ke, J. Yuan, and J. H. Morrissey, PLOS ONE 9, e88675 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    W. Ruf, M. W. Kalnik, T. Lund-Hansen, and T. S. Edgington, J. Biol. Chem. 266, 15719 (1991).

    Google Scholar 

  41. 41.

    Y. Z. Ohkubo, J. H. Morrissey, and E. Tajkhorshid, J. Thromb. Haemost. 8, 1044 (2010).

    Google Scholar 

  42. 42.

    S. Butenas and K. G. Mann, Biochemistry 35, 1904 (1996).

    Article  Google Scholar 

  43. 43.

    Y. Nemerson and D. Repke, Thromb. Res. 40, 351 (1985).

    Article  Google Scholar 

  44. 44.

    P. F. Neuenschwander and J. H. Morrissey, J. Biol. Chem. 267, 14477 (1992).

    Google Scholar 

  45. 45.

    P. F. Neuenschwander, M. M. Fiore, and J. H. Morrissey, J. Biol. Chem. 268, 21489 (1993).

    Google Scholar 

  46. 46.

    W. Kisiel, K. Fujikawa, and E. W. Davie, Biochemistry 16, 4189 (1977).

    Article  Google Scholar 

  47. 47.

    M. Zur and Y. Nemerson, J. Biol. Chem. 255, 5703 (1980).

    Google Scholar 

  48. 48.

    R. J. Baugh, C. D. Dickinson, W. Ruf, and S. Krishnaswamy, J. Biol. Chem. 275, 28826 (2000).

    Article  Google Scholar 

  49. 49.

    B. V Norledge, R. J. Petrovan, W. Ruf, and A. J. Olson, Proteins 53, 640 (2003).

    Article  Google Scholar 

  50. 50.

    S. Krishnaswamy, K. A. Field, T. S. Edgington, et al., J. Biol. Chem. 267, 26110 (1992).

    Google Scholar 

  51. 51.

    P. F. Neuenschwander, E. Bianco-Fisher, R. Rezaie, and J. H. Morrissey, Biochemistry 34, 13988 (1995).

    Article  Google Scholar 

  52. 52.

    N. Tavoosi, R. L. Davis-Harrison, T. V. Pogorelov, et al., J. Biol. Chem. 286, 23247 (2011).

    Article  Google Scholar 

  53. 53.

    J. J. Hathcock, E. Rusinova, H. Andree, and Y. Nemerson, Blood Cells. Mol. Dis. 36, 194 (2006).

    Article  Google Scholar 

  54. 54.

    S. D. Forman and Y. Nemerson, Proc. Natl. Acad. Sci. USA. 83, 4675 (1986).

    ADS  Article  Google Scholar 

  55. 55.

    R. Majumder, J. Wang, and B. R. Lentz, Biophys. J. 84, 1238 (2003).

    ADS  Article  Google Scholar 

  56. 56.

    R. Chattopadhyay, R. Iacob, S. Sen, et al., Biophys. J. 96, 974 (2009).

    ADS  Article  Google Scholar 

  57. 57.

    T. Koklic, R. Majumder, G. E. Weinreb, and B. R. Lentz, Biophys. J. 97, 2232 (2009).

    ADS  Article  Google Scholar 

  58. 58.

    N. A. Podoplelova, A. N. Sveshnikova, J. H. Kurasawa, et al., Biochim. Biophys. Acta 1858, 1216 (2016).

    Article  Google Scholar 

  59. 59.

    J. J. Hathcock, E. Rusinova, R. D. Gentry, et al., Biochemistry 44, 8187 (2005).

    Article  Google Scholar 

  60. 60.

    K. C. Jones and K. G. Mann, J. Biol. Chem. 269, 23367 (1994).

    Google Scholar 

  61. 61.

    R. Gentry, L. Ye, and Y. Nemerson, Biophys. J. 69, 362 (1995).

    ADS  Article  Google Scholar 

  62. 62.

    E.-M. Erb, J. Stenflo, and T. Drakenberg, Eur. J. Biochem. 269, 3041 (2002).

    Article  Google Scholar 

  63. 63.

    P. L. Giesen, G. M. Willems, H. C. Hemker, and W. T. Hermens, J. Biol. Chem. 266, 18720 (1991).

    Google Scholar 

  64. 64.

    H. A. Andree, P. B. Contino, D. Repke, et al., Biochemistry 33, 4368 (1994).

    Article  Google Scholar 

  65. 65.

    G. M. Willems, M. P. Janssen, I. Salemink, et al., Biochemistry 37, 3321 (1998).

    Article  Google Scholar 

  66. 66.

    P. van de Waart, H. Bruls, H. C. Hemker, and T. Lindhout, Biochemistry 22, 2427 (1983).

    Article  Google Scholar 

  67. 67.

    S. Krishnaswamy, K. C. Jones, and K. G. Mann, J. Biol. Chem. 263, 3823 (1988).

    Google Scholar 

  68. 68.

    M. A. Panteleev, N. M. Ananyeva, N. J. Greco, et al., FEBS J. 273, 374 (2006).

    Article  Google Scholar 

  69. 69.

    A. M. Shibeko, S. S. Karamzin, A. A. Butylin, et al., Biochem. Suppl. Ser. A. Membr. Cell Biol. 3, 388 (2009).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. A. Kovalenko.

Additional information

Original Russian Text © T.A. Kovalenko, M.A. Panteleev, A.N. Sveshnikova, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 370–381.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, T.A., Panteleev, M.A. & Sveshnikova, A.N. The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. BIOPHYSICS 62, 291–300 (2017). https://doi.org/10.1134/S0006350917020105

Download citation

Keywords

  • blood coagulation
  • extrinsic tenase
  • factor X
  • dimerization
  • mathematical modeling