Skip to main content
Log in

The effects of carbon monoxide and hydrogen sulfide on transmembrane ion transport

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The activity of electroneutral ion transport in response to the effect of the gasotransmitters carbon monoxide and hydrogen sulfide was investigated. It was shown that phenylephrine, an activator of receptorregulated calcium uptake, enhanced the relaxing action of carbon monoxide and hydrogen sulfide. In contrast, inhibition of the membrane potassium conductance, especially its voltage-dependent component, decreased the myogenic effects of carbon monoxide in the smooth muscles. The effects of hydrogen sulfide depended on its concentration and the means of activation of the cell transport systems. Furthermore, sodium-dependent components of the membrane conductivity are also involved in the effects of this gasotransmitter on ion transport systems in addition to the calcium and potassium conductance. This expands the range of the potential gasotransmitter-affected targets of signaling pathways, which may result in either activation or inhibition of cell functions. The consequences of such impacts on the functionally significant responses of cells, organs, and systems should be taken into account in various physiological and pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SMC:

smooth muscle cells

PE:

phenylephrine

CORM-2:

tricarbonyldichlororuthenium(II) dimer

AP:

action potential

NKCC:

Na+,K+,2Cl cotransporter

References

  1. S. V. Gusakova, I. V. Kovalev, L. V. Smaglii, et al., Usp. Fiziol. Nauk 46 (4), 53 (2015).

    Google Scholar 

  2. S. I. Kolesnikov, B. Ya. Vlasov, and L. I. Kolesnikova, Vestn. Ross. Akad. Med. Nauk, 70 (2), 237 (2015).

    Article  Google Scholar 

  3. N. N. Khaertdinov, D. R. Akhmetshina, A. L. Zefirov, and G. F. Sitdikova, Biol. Membrany 29 (4), 231 (2012).

    Google Scholar 

  4. E. Lowicka and J. Beltowski, Pharmacol. Rep. 59, 4 (2007).

    Google Scholar 

  5. S. H. Heinemann, T. Hoshi, M. Westerhausen, and A. Schiller, Chem. Commun. 50, 3644 (2014).

    Article  Google Scholar 

  6. L. Li, P. Rose, and P. K. Moore, Annu. Rev. Pharmacol. Toxicol. 51, 169 (2011).

    Article  Google Scholar 

  7. A. K. Mustafa, G. Sikka, S. K. Gazi, et al., Circ. Res. 109 (11), 1259 (2011).

    Article  Google Scholar 

  8. Ch. W. Leffler, H. Parfenova, and J. H. Jaggar, Am. J. Physiol. Heart Circ. Physiol. 301, 1 (2011).

    Article  Google Scholar 

  9. J. H. Jaggar, A. Li, H. Parfenova, et al., Circ. Res. 97 (8), 805 (2005).

    Article  Google Scholar 

  10. C. Peers, M. L. Dallas, and J. L. Scragg, Comm. Integr. Biol. 2, 241 (2009).

    Article  Google Scholar 

  11. M. L. Dallas, J. L. Scragg, and C. Peers, Adv. Exp. Med. Biol. 648, 89 (2009).

    Article  Google Scholar 

  12. G. H. Liang, Q. Xi, Ch. W. Leffler, and J. H. Jaggar, J. Physiol. 590 (11), 2709 (2012).

    Article  Google Scholar 

  13. R. Y. Zhang, Y. Sun, H. J. Tsai, et al., PLOS ONE 7 (5), Article ID e37073 (2012). http://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0037073.

    Google Scholar 

  14. F. Moccia, G. Bertoni, A. F. Pla, et al., Curr. Pharm. Biotechnol. 12 (9), 1416 (2011).

    Article  Google Scholar 

  15. W. Zhang, C. Xu, G Yang, et al., Oxid. Med. Cell. Long. 2015, Article ID 323269 (2015). http://dx.doi.org/. doi 10.1155/2015/323269

    Google Scholar 

  16. A. V. Sitozhevskii, I. V. Petrova, S. V. Kremeno, et al., Ross. Fiziol. Zh. im. I. M. Sechenova 92 (4), 461 (2006).

    Google Scholar 

  17. I. V. Kovalev, M. B. Baskakov, S. V. Gusakova, et al., Byull. Sib. Med. 11 (6), 51 (2012).

    Google Scholar 

  18. L. V. Smaglii, S. V. Gusakova, Yu. G. Birulina, et al., Ross. Fiziol. Zh. im. I. M. Sechenova 101 (4), 441 (2015).

    Google Scholar 

  19. J. J. Lim, Y. H. Liu, E. S. Win-Khin, et al., Am. J. Physiol. Cell. Physiol. 295, 1261 (2008).

    Article  Google Scholar 

  20. A. A. Platonova, S. V. Koltsova, G. V. Maksimov, et al., Biophysics (Moscow) 58 (3), 389 (2013).

    Article  Google Scholar 

  21. S. N. Orlov, S. V. Koltsova, J. Tremblay, et al., Ann. Med. 44 (Suppl. 1), S111 (2012).

    Article  Google Scholar 

  22. Y. J. Anfinogenova, M. B. Baskakov, I. V. Kovalev, et al., Pflugers Arch. Eur. J. Physiol. 449, 42 (2004).

    Article  Google Scholar 

  23. F. Akar, G. Jiang, R.J. Paul, and W. C. O’Neill, Am. J. Physiol. Cell. Physiol. 281, 579 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gusakova.

Additional information

Original Russian Text © S.V. Gusakova, I.V. Kovalev, Yu.G. Birulina, L.V. Smagliy, I.V. Petrova, A.V. Nosarev, A.N. Aleinyk, S.N. Orlov, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 290–297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusakova, S.V., Kovalev, I.V., Birulina, Y.G. et al. The effects of carbon monoxide and hydrogen sulfide on transmembrane ion transport. BIOPHYSICS 62, 220–226 (2017). https://doi.org/10.1134/S0006350917020099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917020099

Keywords

Navigation