Skip to main content

An NMR relaxation and spin diffusion study of cellulose structure during water adsorption

Abstract

The goal of this paper is a systematic investigation of changes in the supramolecular structure of cellulose during its water uptake. The main attention is concentrated on the analysis of the mechanism of dispersion of microfibrils by proton NMR relaxation techniques. Spin diffusion NMR experiments made it possible to estimate the linear dimensions of the surface thickness of cellulose crystallites and the average depth of micropores that are formed between elementary fibrils, as well as the character of the filling of micropores during adsorption. It has been shown that when the relative water content gradually increases to 7–8%, water molecules occupy the space between cellulose microfibrils, which is accompanied by an increase in the pore sizes and their specific surface area and a simultaneous decrease in the degree of crystallinity. Upon acquiring a free induction decay signal, a magic sandwich echo sequence was used, due to which the accuracy and information value of the results were considerably improved.

This is a preview of subscription content, access via your institution.

Abbreviations

FID:

free induction decay

MSE:

magic sandwich echo

EF:

elementary fibril

References

  1. 1.

    D. Ciolacu, F. Ciolacu, and V. I. Popa, Chem. Technol. 45, 13 (2011).

    Google Scholar 

  2. 2.

    R. J. Moon, A. Martini, J. Nairn, et al., Chem. Soc. Rev. 40, 3941 (2011).

    Article  Google Scholar 

  3. 3.

    Y. B. Grunin, L. Y. Grunin, E. A. Nikolskaya, and V. I. Talantsev, Polymer Sci. Ser. A 54 (3), 201 (2012).

    Article  Google Scholar 

  4. 4.

    Sorption Processes in Biopolymers and Spectroscopic Methods of Their Study, Ed. by Yu. B. Grunin (Mari State Techn. Univ., Ioshkar-Ola, 2010) [in Russian].

  5. 5.

    Yu. B. Grunin, L. Yu. Grunin, V. I. Talantsev, et al., in Structure and Physicochemical Properties of Celluloses and Cellulose-Based Nanocomposites (Petrozavodsk State Univ., Petrozavodsk, 2014) [in Russian].

    Google Scholar 

  6. 6.

    L. Yu. Grunin, Yu. B. Grunin, E. A. Nikolskaya, et al., Polymer Sci. Ser. A 57 (1), 43 (2015).

    Article  Google Scholar 

  7. 7.

    Y. B. Grunin, L. Yu. Grunin, E. A. Nikolskaya, et al., Biophysics (Moscow) 60 (1), 43 (2015).

    Article  Google Scholar 

  8. 8.

    Y. Nishiyama, G. P. Johnson, A. D. French, et al., Biomacromolecules 9 (11), 3133 (2008).

    Article  Google Scholar 

  9. 9.

    Y. Nishiyama, J. Wood Sci. 55, 241 (2009).

    Article  Google Scholar 

  10. 10.

    Q. Li and S. Renneckar, Biomacromolecules 12 (3), 650 (2011).

    Article  Google Scholar 

  11. 11.

    A. C. Khazraji and S. Robert, J. Nanomater. 2013, Article ID 409676 (2013).

    Google Scholar 

  12. 12.

    N. C. Carpita, Plant Physiol. 155 (1), 171 (2011).

    MathSciNet  Article  Google Scholar 

  13. 13.

    M. Foston and A. J. Ragauskas, Energy Fuels 24 (10), 5677 (2010).

    Article  Google Scholar 

  14. 14.

    Y.-Q. Song, J. Magn. Reson. 229, 12 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    J. Mitchell, L. F. Gladden, and T. C. Chandrasekera, Prog. Nucl. Mag. Res. Sp. 76, 1 (2014).

    Article  Google Scholar 

  16. 16.

    METSO-MR analyzer. http://www.metso.com.

  17. 17.

    C. Hertlein, G. Strobl, and K. Saalwächter, Polymer 47 (20), 7216 (2006).

    Article  Google Scholar 

  18. 18.

    K. Saalwächter, Y. Thomann, A. Hasenhindl, and H. Schneider, Macromolecules 41, 9187 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    F. V. Chavez and K. Saalwächter, Macromolecules 44, 1549 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    T. Yamanobe, H. Uehara, and M. Kakiage, Annu. Rep. NMR. Spectrosc. 70, 203 (2010).

    Article  Google Scholar 

  21. 21.

    A. Pines, W.-K. Rhim, and J. S. Waugh, J. Magn. Reson. 6, 457 (1972).

    ADS  Google Scholar 

  22. 22.

    S. Hafner, D. E. Demco, and R. Kimmich, USA Patent No. 5327087 (1994).

    Google Scholar 

  23. 23.

    Resonance Systems Ltd., http://www.nmr-design. com.

  24. 24.

    A. Maus, C. Hertlein, and K. Saalwächter, Macromol. Chem. Phys. 207, 1150 (2006).

    Article  Google Scholar 

  25. 25.

    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, et al., Butlerov. Soobshch. 24 (4), 35 (2011).

    Google Scholar 

  26. 26.

    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, and V. I. Talantsev, Butlerov. Soobshch. 20 (6), 35 (2010).

    Google Scholar 

  27. 27.

    T. M. Todoruk, I. D. Hartley, R. Teymoori, et al., Materials 4, 131 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    K. Schaler, Ph. D. Dissertation (Martin-Luther-Universitát, Halle-Wittenberg, 2012).

    Google Scholar 

  29. 29.

    K. Levenberg, Quart. Appl. Math. 2, 164 (1944).

    MathSciNet  Article  Google Scholar 

  30. 30.

    E. W. Hansen, P. E. Kristiansen, and B. Pedersen, J. Phys. Chem. B 102, 5444 (1998).

    Article  Google Scholar 

  31. 31.

    W. Derbyshire, M. van den Bosch, D. van Dusschoten, et al., J. Magn. Reson. 168, 278 (2004).

    ADS  Article  Google Scholar 

  32. 32.

    P. W. Andersen and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    ADS  Article  Google Scholar 

  33. 33.

    N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    ADS  Article  Google Scholar 

  34. 34.

    E. A. Nikol’skaya, L. Yu. Grunin, Yu. B. Grunin, and Y. Hiltunen, Analit. Kontrol’ 17 (2), 153 (2013).

    Google Scholar 

  35. 35.

    V. I. Chizhik, Quantum Physics: Magnetic Resonance and Its Applications (St. Petersb. State Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  36. 36.

    J. Leisen, H. W. Beckham, and M. A. Sharaf, Macromolecules 37, 8028 (2004)

    ADS  Article  Google Scholar 

  37. 37.

    M. Mauri, Y. Thomann, H. Schneider, and K. Saalwächter, Solid State Nucl. Mag. 34, 125 (2008).

    Article  Google Scholar 

  38. 38.

    D. Topgaard and O. Soderman, Langmuir 17, 2694 (2001).

    Article  Google Scholar 

  39. 39.

    R. E. Taylor, A. D. French, G. R. Gamble, et al., J. Mol. Struct. 878, 177 (2008).

    ADS  Article  Google Scholar 

  40. 40.

    M. Goldman, L. Shen. Phys. Rev. 144, 321 (1966).

    ADS  Article  Google Scholar 

  41. 41.

    D. E. Demco, A. Johansson, and J. Tegenfeldt, Solid State Nucl. Magn, Reson. 4, 13 (1995).

    Article  Google Scholar 

  42. 42.

    T. T. P. Cheung and B. C. Gerstein, J. Appl. Phys. 52, 5517 (1981).

    ADS  Article  Google Scholar 

  43. 43.

    T. T. P. Cheung, Phys. Rev. B 23, 1404 (1981).

    ADS  Article  Google Scholar 

  44. 44.

    G. Zuckerstätter, G. Schild, P. Wollboldt, et al., Lenzinger Berichte 87, 38 (2009).

    Google Scholar 

  45. 45.

    A. C. O’Sullivan, Cellulose 4 (3), 173 (1997).

    Article  Google Scholar 

  46. 46.

    V. Chunilall, T. Bush, and P. T. Larsson, in Cellulose–Fundamental Aspects (Intech Publ., Manhattan, New York, 2013).

    Google Scholar 

  47. 47.

    M. N. L. Moigne, Disertation Docteur de l’Ecole Nationale Superieure des Mines de Paris (Paris, 2008).

    Google Scholar 

  48. 48.

    S. P. Papkov and E. Z. Fainberg, Interaction of Cellulose and Cellulose-Based Materials with Water (Khimiya, Moscow, 1976) [in Russian].

    Google Scholar 

  49. 49.

    S.-Y. Ding, S. Zhao, and Y. Zeng, Cellulose 21 (2), 863 (2013).

    Article  Google Scholar 

  50. 50.

    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, et al., Russ. J. Phys. Chem. A 87 (1), 100 (2013).

    Article  Google Scholar 

  51. 51.

    K. Leppänen, K. Pirkkalainen, P. Penttilá, et al., J. Physics: Conf. Ser. 247, (2010).

    Google Scholar 

  52. 52.

    S. Ozeki, Langmuir 5, 181 (1989).

    Article  Google Scholar 

  53. 53.

    L. Yu. Grunin, Candidate’s Dissertation in Chemistry (Ioshkar-Ola, 1998).

    Google Scholar 

  54. 54.

    Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikolskaya, Russ. J. Phys. Chem. A 81 (7), 1165 (2007).

    Article  Google Scholar 

  55. 55.

    E. A. Nikol’skaya, L. Yu. Grunin, Yu. B. Grunin, in Structure and Dynamics of Molecular Systems (Mari State Techn. Univ., Ioshkar-Ola, 2009), Vol. 16, Part 2, pp. 44–49 [in Russian].

    Google Scholar 

  56. 56.

    E. A. Nikol’skaya, L. Yu. Grunin, D. V. Karasev, and Yu. B. Grunin, in Proc. of the 4th Young Sci. Conf. “Magnetic Resonance and Its Applications" (St. Petersburg, 2007), pp. 69–71 [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Y. Grunin.

Additional information

Original Russian Text © L.Y. Grunin, Y.B. Grunin, E.A. Nikolskaya, N.N. Sheveleva, I.A. Nikolaev, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 266–275.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grunin, L.Y., Grunin, Y.B., Nikolskaya, E.A. et al. An NMR relaxation and spin diffusion study of cellulose structure during water adsorption. BIOPHYSICS 62, 198–206 (2017). https://doi.org/10.1134/S0006350917020087

Download citation

Keywords

  • cellulose
  • elementary fibril
  • NMR relaxation
  • spin diffusion
  • degree of crystallinity