, Volume 62, Issue 2, pp 198–206 | Cite as

An NMR relaxation and spin diffusion study of cellulose structure during water adsorption

  • L. Y. GruninEmail author
  • Y. B. Grunin
  • E. A. Nikolskaya
  • N. N. Sheveleva
  • I. A. Nikolaev
Molecular Biophysics


The goal of this paper is a systematic investigation of changes in the supramolecular structure of cellulose during its water uptake. The main attention is concentrated on the analysis of the mechanism of dispersion of microfibrils by proton NMR relaxation techniques. Spin diffusion NMR experiments made it possible to estimate the linear dimensions of the surface thickness of cellulose crystallites and the average depth of micropores that are formed between elementary fibrils, as well as the character of the filling of micropores during adsorption. It has been shown that when the relative water content gradually increases to 7–8%, water molecules occupy the space between cellulose microfibrils, which is accompanied by an increase in the pore sizes and their specific surface area and a simultaneous decrease in the degree of crystallinity. Upon acquiring a free induction decay signal, a magic sandwich echo sequence was used, due to which the accuracy and information value of the results were considerably improved.


cellulose elementary fibril NMR relaxation spin diffusion degree of crystallinity 



free induction decay


magic sandwich echo


elementary fibril


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ciolacu, F. Ciolacu, and V. I. Popa, Chem. Technol. 45, 13 (2011).Google Scholar
  2. 2.
    R. J. Moon, A. Martini, J. Nairn, et al., Chem. Soc. Rev. 40, 3941 (2011).CrossRefGoogle Scholar
  3. 3.
    Y. B. Grunin, L. Y. Grunin, E. A. Nikolskaya, and V. I. Talantsev, Polymer Sci. Ser. A 54 (3), 201 (2012).CrossRefGoogle Scholar
  4. 4.
    Sorption Processes in Biopolymers and Spectroscopic Methods of Their Study, Ed. by Yu. B. Grunin (Mari State Techn. Univ., Ioshkar-Ola, 2010) [in Russian].Google Scholar
  5. 5.
    Yu. B. Grunin, L. Yu. Grunin, V. I. Talantsev, et al., in Structure and Physicochemical Properties of Celluloses and Cellulose-Based Nanocomposites (Petrozavodsk State Univ., Petrozavodsk, 2014) [in Russian].Google Scholar
  6. 6.
    L. Yu. Grunin, Yu. B. Grunin, E. A. Nikolskaya, et al., Polymer Sci. Ser. A 57 (1), 43 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. B. Grunin, L. Yu. Grunin, E. A. Nikolskaya, et al., Biophysics (Moscow) 60 (1), 43 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Nishiyama, G. P. Johnson, A. D. French, et al., Biomacromolecules 9 (11), 3133 (2008).CrossRefGoogle Scholar
  9. 9.
    Y. Nishiyama, J. Wood Sci. 55, 241 (2009).CrossRefGoogle Scholar
  10. 10.
    Q. Li and S. Renneckar, Biomacromolecules 12 (3), 650 (2011).CrossRefGoogle Scholar
  11. 11.
    A. C. Khazraji and S. Robert, J. Nanomater. 2013, Article ID 409676 (2013).Google Scholar
  12. 12.
    N. C. Carpita, Plant Physiol. 155 (1), 171 (2011).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Foston and A. J. Ragauskas, Energy Fuels 24 (10), 5677 (2010).CrossRefGoogle Scholar
  14. 14.
    Y.-Q. Song, J. Magn. Reson. 229, 12 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    J. Mitchell, L. F. Gladden, and T. C. Chandrasekera, Prog. Nucl. Mag. Res. Sp. 76, 1 (2014).CrossRefGoogle Scholar
  16. 16.
    METSO-MR analyzer. Scholar
  17. 17.
    C. Hertlein, G. Strobl, and K. Saalwächter, Polymer 47 (20), 7216 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Saalwächter, Y. Thomann, A. Hasenhindl, and H. Schneider, Macromolecules 41, 9187 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    F. V. Chavez and K. Saalwächter, Macromolecules 44, 1549 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    T. Yamanobe, H. Uehara, and M. Kakiage, Annu. Rep. NMR. Spectrosc. 70, 203 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Pines, W.-K. Rhim, and J. S. Waugh, J. Magn. Reson. 6, 457 (1972).ADSGoogle Scholar
  22. 22.
    S. Hafner, D. E. Demco, and R. Kimmich, USA Patent No. 5327087 (1994).Google Scholar
  23. 23.
    Resonance Systems Ltd., http://www.nmr-design. com.Google Scholar
  24. 24.
    A. Maus, C. Hertlein, and K. Saalwächter, Macromol. Chem. Phys. 207, 1150 (2006).CrossRefGoogle Scholar
  25. 25.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, et al., Butlerov. Soobshch. 24 (4), 35 (2011).Google Scholar
  26. 26.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, and V. I. Talantsev, Butlerov. Soobshch. 20 (6), 35 (2010).Google Scholar
  27. 27.
    T. M. Todoruk, I. D. Hartley, R. Teymoori, et al., Materials 4, 131 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    K. Schaler, Ph. D. Dissertation (Martin-Luther-Universitát, Halle-Wittenberg, 2012).Google Scholar
  29. 29.
    K. Levenberg, Quart. Appl. Math. 2, 164 (1944).MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. W. Hansen, P. E. Kristiansen, and B. Pedersen, J. Phys. Chem. B 102, 5444 (1998).CrossRefGoogle Scholar
  31. 31.
    W. Derbyshire, M. van den Bosch, D. van Dusschoten, et al., J. Magn. Reson. 168, 278 (2004).ADSCrossRefGoogle Scholar
  32. 32.
    P. W. Andersen and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).ADSCrossRefGoogle Scholar
  33. 33.
    N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).ADSCrossRefGoogle Scholar
  34. 34.
    E. A. Nikol’skaya, L. Yu. Grunin, Yu. B. Grunin, and Y. Hiltunen, Analit. Kontrol’ 17 (2), 153 (2013).Google Scholar
  35. 35.
    V. I. Chizhik, Quantum Physics: Magnetic Resonance and Its Applications (St. Petersb. State Univ., St. Petersburg, 2009) [in Russian].Google Scholar
  36. 36.
    J. Leisen, H. W. Beckham, and M. A. Sharaf, Macromolecules 37, 8028 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    M. Mauri, Y. Thomann, H. Schneider, and K. Saalwächter, Solid State Nucl. Mag. 34, 125 (2008).CrossRefGoogle Scholar
  38. 38.
    D. Topgaard and O. Soderman, Langmuir 17, 2694 (2001).CrossRefGoogle Scholar
  39. 39.
    R. E. Taylor, A. D. French, G. R. Gamble, et al., J. Mol. Struct. 878, 177 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    M. Goldman, L. Shen. Phys. Rev. 144, 321 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    D. E. Demco, A. Johansson, and J. Tegenfeldt, Solid State Nucl. Magn, Reson. 4, 13 (1995).CrossRefGoogle Scholar
  42. 42.
    T. T. P. Cheung and B. C. Gerstein, J. Appl. Phys. 52, 5517 (1981).ADSCrossRefGoogle Scholar
  43. 43.
    T. T. P. Cheung, Phys. Rev. B 23, 1404 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    G. Zuckerstätter, G. Schild, P. Wollboldt, et al., Lenzinger Berichte 87, 38 (2009).Google Scholar
  45. 45.
    A. C. O’Sullivan, Cellulose 4 (3), 173 (1997).CrossRefGoogle Scholar
  46. 46.
    V. Chunilall, T. Bush, and P. T. Larsson, in Cellulose–Fundamental Aspects (Intech Publ., Manhattan, New York, 2013).Google Scholar
  47. 47.
    M. N. L. Moigne, Disertation Docteur de l’Ecole Nationale Superieure des Mines de Paris (Paris, 2008).Google Scholar
  48. 48.
    S. P. Papkov and E. Z. Fainberg, Interaction of Cellulose and Cellulose-Based Materials with Water (Khimiya, Moscow, 1976) [in Russian].Google Scholar
  49. 49.
    S.-Y. Ding, S. Zhao, and Y. Zeng, Cellulose 21 (2), 863 (2013).CrossRefGoogle Scholar
  50. 50.
    Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, et al., Russ. J. Phys. Chem. A 87 (1), 100 (2013).CrossRefGoogle Scholar
  51. 51.
    K. Leppänen, K. Pirkkalainen, P. Penttilá, et al., J. Physics: Conf. Ser. 247, (2010).Google Scholar
  52. 52.
    S. Ozeki, Langmuir 5, 181 (1989).CrossRefGoogle Scholar
  53. 53.
    L. Yu. Grunin, Candidate’s Dissertation in Chemistry (Ioshkar-Ola, 1998).Google Scholar
  54. 54.
    Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikolskaya, Russ. J. Phys. Chem. A 81 (7), 1165 (2007).CrossRefGoogle Scholar
  55. 55.
    E. A. Nikol’skaya, L. Yu. Grunin, Yu. B. Grunin, in Structure and Dynamics of Molecular Systems (Mari State Techn. Univ., Ioshkar-Ola, 2009), Vol. 16, Part 2, pp. 44–49 [in Russian].Google Scholar
  56. 56.
    E. A. Nikol’skaya, L. Yu. Grunin, D. V. Karasev, and Yu. B. Grunin, in Proc. of the 4th Young Sci. Conf. “Magnetic Resonance and Its Applications" (St. Petersburg, 2007), pp. 69–71 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • L. Y. Grunin
    • 1
    • 2
    Email author
  • Y. B. Grunin
    • 1
  • E. A. Nikolskaya
    • 3
  • N. N. Sheveleva
    • 1
  • I. A. Nikolaev
    • 1
  1. 1.Volga State Technology UniversityYoshkar-Ola, Mari El RepublicRussia
  2. 2.Mari State UniversityYoshkar-Ola, Mari El RepublicRussia
  3. 3.Mikkeli University of Applied Sciences, Fiber laboratorySavonlinnaFinland

Personalised recommendations