Skip to main content
Log in

Formation of ice microparticles in cryoprotective solutions

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The formation of ice microparticles in 0.2-mm thin layers of aqueous solutions of cryoprotective agents cooled to temperatures reaching–196°C was studied. The shape and size of ice microparticles were determined by cryomicroscopy. At temperatures below 0°C, the formation of solid ice masses was observed; further cooling caused ice fracturing induced by emerging thermomechanical stresses and the formation of microparticles. The shape and size of the particles depended on the composition of the frozen solution and on the rate of cooling. The components of cryoprotective solutions (cryoprotectants, egg yolk, sugars, and lipids) significantly changed the shape and size of the ice microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PS:

physiological saline

DMSO:

dimethylsulfoxide

References

  1. G. M. Fahy, J. Saur, and J. R. Williams, Cryobiology 27, 492 (1980).

    Article  Google Scholar 

  2. G. M. Fahy, in The Biophysics of Organ Preservation, Ed. by D. E. Pegg and A. M. Karow, Jr. (Plenum, New York, 1987), pp. 265–297.

    Book  Google Scholar 

  3. C. Kroener and B. J. Luyet, Biodynamica 10 (201) 47 (1966).

    Google Scholar 

  4. M. J. Taylor, Y. C. Song, and K. G. M. Brockbank, in Life in the Frozen State, Ed. by B. J. Fuller, N. Lane, and E. E. Benson (CRC, New York, 2004), pp. 603–641.

    Book  Google Scholar 

  5. T. Koop, B. Luo, A. Tsias, and T. Peter, Nature, 406, 611 (2000).

    Article  ADS  Google Scholar 

  6. A. G. Stromberg and D. P. Semchenko, Physical Chemistry (Vyschaya Shkola, Moscow, 1999) [in Russian].

    Google Scholar 

  7. D. E. Pegg, M. C. Wusteman, and S. Boylan, Cryobiology 34 (2), 183 (1997).

    Article  Google Scholar 

  8. N. I. Koshkin and M. G. Shirkevich, Hardbook of Elementary Physics, 9th ed. (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  9. Y. Rabin and P. S. Steif, ASME J. Appl. Mech. 65 (2), 328 (1998).

    Article  ADS  Google Scholar 

  10. Y. Rabin and P. S. Steif, Int. J. Solids Struct. 37, 2363 (2000).

    Article  Google Scholar 

  11. Y. Rabin, P. S. Steif, K. C. Hess, et al., Cryobiology 53, 75 (2006).

    Article  Google Scholar 

  12. E. Asahina, Nature 191, 1263 (1961).

    Article  ADS  Google Scholar 

  13. A. Baudot, L. Alger, and P. Boutron, Cryobiology 40, 151 (2000).

    Article  Google Scholar 

  14. A. Baudot, C. Cacela, M. L. Duarte, and R. Faustoc, Cryobiology 44, 150 (2002).

    Article  Google Scholar 

  15. A. Baudot and V. Odagescu, Cryobiology 48, 283 (2004).

    Article  Google Scholar 

  16. K. R. Diller, J. Biomech. Eng. 127, 67 (2005).

    Article  Google Scholar 

  17. J. M. Hey, P. M. Mehl, and D. R. MacFarlane, J. Therm. Anal. 49, 991 (1997).

    Article  Google Scholar 

  18. J. M. Hey and D. R. MacFarlane, Cryobiology 37, 119 (1998).

    Article  Google Scholar 

  19. H. Ishiguro and B. Rubinsky, Cryobiology 31, 483 (1994).

    Article  Google Scholar 

  20. H. Ishiguro, A. Kataori, and M. Nozawa, Cryobiology 59, 410 (2009).

    Google Scholar 

  21. P. Mazur, I. L. Pinn, and F. W. Kleinhans, Cryobiology 55, 158 (2007).

    Article  Google Scholar 

  22. P. M. Mehl, Cryobiology 30, 509 (1993).

    Article  Google Scholar 

  23. B. Rubinsky and M. Ikeda, Cryobiology 22, 55 (1985).

    Article  Google Scholar 

  24. P. Mazur, J. Gen. Physiol. 47, 347 (1963).

    Article  Google Scholar 

  25. L. I. Kramarova, N. A. Ivlicheva, R. H. Ziganshin, et al., in Living in a Seasonal World, Ed. by T. Ruf (Springer-Verlag, Berlin, 2012), pp. 201–210.

    Book  Google Scholar 

  26. L. I. Tsvetkova, N. D. Pronina, O. B. Dokina, et al., Rybnoe Khoz. No. 4, 77 (2012).

    Google Scholar 

  27. Y. Rabin and P. S. Steif, in Advances in Biopreservation, Ed. by J. G. Baust and J. M. Baust (Taylor & Francis Group, 2007), pp. 359–379.

    Google Scholar 

  28. E. Burzawa-Gerard, B. F. Goncharov, A. Dumas, and Y. A. Fontaine, Gen. Comp. Endocrinol. 29 (4), 498 (1976).

    Article  Google Scholar 

  29. N. A. Ivlicheva, I. A. Chistopol’skii, L. I. Kramarova, and E. N. Gakhova, Biol. Membrany 31 (5), 342 (2014).

    Google Scholar 

  30. C. Labbe, G. Maisse, and R. Billard, in Abstr. XXXIII Int. Symp. on New Species for Mediterranean Aquaculture (Alghero, 1998), pp. 97–110.

    Google Scholar 

  31. A. A. Andreev, D. G. Sadikova, E. N. Gakhova, et al., Biophysics (Moscow) 54 (5), 612 (2009).

    Article  Google Scholar 

  32. E. Schmidt, Math. Nachr. 1, 81 (1948).

    Article  MathSciNet  Google Scholar 

  33. A. V. Boroda, Candidate’s Dissertation in Biology (Vladivostok, 2010).

    Google Scholar 

  34. B. J. Fuller, CryoLetters 25 (6), 375 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andreev.

Additional information

Original Russian Text © A.A. Andreev, D.G. Sadikova, N.A. Ivlicheva, A.V. Boroda, 2017, published in Biofizika, 2017, Vol. 62, No. 2, pp. 213–220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.A., Sadikova, D.G., Ivlicheva, N.A. et al. Formation of ice microparticles in cryoprotective solutions. BIOPHYSICS 62, 151–157 (2017). https://doi.org/10.1134/S000635091702004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091702004X

Keywords

Navigation