Skip to main content
Log in

A fluorometric study of modification of bovine serum albumin with structural analogues of taurine chloramine

Biophysics Aims and scope Submit manuscript

Abstract

We studied the effects of taurine chloramine and its structural analogues, antiplatelet agents, on the tertiary structure of bovine serum albumin by recording changes in its fluorescence spectrum. BSA was chosen as a model of the extracellular part of the purine P2Y12 receptor in platelets. For the detection of weak spectral shifts of the protein fluorescence, the index, which represents the ratio of the two light sums measured from approximately the middle of the spectrum towards the short- and longwave limits of its registration, was used. Administration of N-chlorotaurine and its analogues N-acetyl-N-chlorotaurine and N-isopropyl-N-chlorotaurine in albumin solution in equimolar concentrations cause weakening and red shift of the tryptophanyl fluorescence of the protein, indicating reorganization of the protein’s tertiary structure, thereby changing the properties of the microenvironment of tryptophan residues, primarily, Trp 134. All these changes are probably due to a covalent modification of the sulfhydryl group of Cys34 residue. It was hypothesized that chloramines of taurine have the ability to inhibit the activity of the ADP P2Y12 receptor in platelets due to the modification of its sulfhydryl group and that the inhibitory effect on the ADP-binding site has an allosteric character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. A. Murina, D. I. Roshchupkin, N. N. Kravchenko, et al., Biofizika 42 (6), 1279 (1997).

    Google Scholar 

  2. D. I. Roshchupkin, M. A. Murina, N. N. Kravchenko et al., Biofizika 52 (5), 527 (2007).

    Google Scholar 

  3. M. A. Murina, D. I. Roshchupkin, K. V. Kondrashova, et al., Bull. Exp. Biol. Med. 157 (2), 207 (2014).

    Article  Google Scholar 

  4. J. M. Zgliczynski, T. Stelmaszynska, J. Domanski, et al., Biochim. Biophys.Acta 235, 419 (1971).

    Article  Google Scholar 

  5. W. Gottardi, M. Hagleitner, and M. Nagl, Arch. Pharm. Chem. Life Sci. 338, 473 (2005).

    Article  Google Scholar 

  6. M. A. Murina, D. I. Roshchupkin, A. O. Petrova, Vestn. Ross. Akad. Med. Nauk No. 10, 43 (2009).

    Google Scholar 

  7. L. Wang, B. Belisle and M. Bassiri, Antimicrob. Agents Chemother. 55 (6), 2688 (2011).

    Article  Google Scholar 

  8. C. Martini, A. Hammerer-Lercher, M. Zuck, et al., Antimicrob. Agents Chemother. 56, 1979 (2012).

    Article  Google Scholar 

  9. D. I. Roshchupkin, K. V. Kondrashova, and M. A. Murina, Biophysics (Moscow) 59 (6), 849 (2014).

    Article  Google Scholar 

  10. J. M. Siller-Matula, J. Krumphuber, and B. Jilma, Br. J. Pharmacol. 159, 502 (2010).

    Article  Google Scholar 

  11. P. Damman, P. Woudstra, W. J. Kuijt, et al., J. Thromb. Thrombolysis 33, 143 (2012).

    Article  Google Scholar 

  12. E. L. Thomas, M. B. Grisham, and M. M. Jefferson, J. Clin. Invest. 72, 441 (1983).

    Article  Google Scholar 

  13. W. Vogt, Free Radic. Biol. Med. 18 (1), 93 (1995).

    Article  Google Scholar 

  14. A. V. Peskin and C. C. Winterbourn, Free Radic. Biol. Med. 35 (10), 1252 (2003).

    Article  Google Scholar 

  15. B. S. Rayner, D. T. Love, and C. L. Hawkins, Free Radic. Biol. Med. 71, 240 (2014).

    Article  Google Scholar 

  16. K. Zhang, J. Zhang, Z.-G. Gao, et al., Nature 509, 115 (2014).

    Article  ADS  Google Scholar 

  17. J. Zhang, K. Zhang, Z.-G. Gao, et al., Nature 509, 119 (2014).

    Article  ADS  Google Scholar 

  18. A. Bujacz, Acta Cryst. D68, 1278 (2012).

  19. A. C. Carr, C. L. Hawkins, S. R. Thomas, et al., Free Radic. Biol. Med. 30, 526 (2001).

    Article  Google Scholar 

  20. L. Turell, R. Radi, and B. Alvarez, Free Radic. Biol. Med. 65, 244 (2013).

    Article  Google Scholar 

  21. M. Niziolek, M. Kot, and K. Pyka, Acta Biochim. Pol. 50 (3), 753 (2003).

    Google Scholar 

  22. W. L. L. Demian, N. Kottari, and T. Ch. Shiao, J. Mass Spectrom. 49, 1223 (2014).

    Article  Google Scholar 

  23. S. Sugio, A. Kashima, S. Moshizuki, et al., Prot. Engineer. 12, 439 (1999).

    Article  Google Scholar 

  24. E. A. Burstein, N. S. Vedenkina, and M. N. Ivkova, Photochem. Photobiol. 18, 263 (1973).

    Article  Google Scholar 

  25. S. V. Konev, E. A. Chernitskii, S. L. Aksentsev, et al., Mol. Cell. Biochem. 7, 5 (1975).

    Article  Google Scholar 

  26. S. Ghosh, C. Ghosh, S. Nandi, et al., Phys. Chem. Chem. Phys. 17, 8017 (2015).

    Article  Google Scholar 

  27. V. F. Ximenes, L. M. da Fonseca, and A. C. de Almeida, Arch. Biochem. Biophys. 507, 315 (2011).

    Article  Google Scholar 

  28. W. Gottardi and M. Nagl, Arch. Pharm. Pharm. Med. Chem. 9, 411 (2002).

    Article  Google Scholar 

  29. H. Chen, P. He, H. Rao, et al., Chemosphere 129, 217 (2014).

    Article  Google Scholar 

  30. Y. Shechter, Y. Burstein, and A. Patchornik, Biochemistry 14, 4497 (1975).

    Article  Google Scholar 

  31. L. De Carvalho Bertozo, N. H. Morgon, A. R. De Souza, et al., Biomolecules 6, 23 (2016).

    Article  Google Scholar 

  32. S. Curry, P. Brick, and N. P. Franks, Biochim. Biophys. Acta 1441, 131 (1999).

    Article  Google Scholar 

  33. J. Ghuman, P. A. Zunszain, I. Petitpas, et al., J. Mol. Biol. 353, 38 (2005)

    Article  Google Scholar 

  34. P. Ascenzi and M. Fasano, IUBMB Life 61 (12), 1118 (2009).

    Article  Google Scholar 

  35. M. Anraku, U. Kragh-Hansen, K. Kawai, et al., Pharmaceut. Res. 20 (4), 684 (2003).

    Article  Google Scholar 

  36. K. Takabayashi, T. Imada, Y. Saito, et al., Eur. J. Biochem. 136, 291 (1983).

    Article  Google Scholar 

  37. D. Spadaroa, B.-W. Yuna, S. H. Spoela, et al., Physiol. Plant. 138, 360 (2010).

    Article  Google Scholar 

  38. H. Grigoryan, H. Li, A. T. Iavarone, et al., Chem. Res. Toxicol. 25, 1633 (2012).

    Article  Google Scholar 

  39. C. L. Hawkins, D. I. Pattison, and M. J. Davis, Amino Acids 25, 259 (2003).

    Article  Google Scholar 

  40. M. A. Murina, D. I. Roshchupkin, N. A. Chudina, et al., Bull. Exp. Biol. Med. 147 (6), 704 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Murina.

Additional information

Original Russian Text © D.I. Roshchupkin, K.V. Buravleva, M.A. Murina, V.I. Sergienko, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 31–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshchupkin, D.I., Buravleva, K.V., Murina, M.A. et al. A fluorometric study of modification of bovine serum albumin with structural analogues of taurine chloramine. BIOPHYSICS 62, 24–30 (2017). https://doi.org/10.1134/S0006350917010171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010171

Keywords

Navigation