Skip to main content
Log in

Deterministic chaоs and the problem of predictability in population dynamics

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The studies of the processes that can significantly influence the predictability in population dynamics are reviewed and the results of mathematical simulations of population dynamics are compared to the time series obtained in field observations. Considerable attention is given to the chaotic changes in population abundance. Some methods of numerical analysis of chaoticity and predictability of the time series are considered. The importance of comparing the results of mathematical simulation and observation data is tightly linked to problems in detecting chaos in the dynamics of natural populations and estimating the prevalence of chaotic regimes in nature. Insight into these problems can allow identification of the functional role of chaotic regimes in population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Schuster, Deterministic Chaos: An Introduction (Oxford Univ. Press, New York, 1984; Mir, Moscow, 1988).

    MATH  Google Scholar 

  2. H. Poincaré, Bulletin astronomique 8, 12 (1891).

    Google Scholar 

  3. I. Stewart, Visions of Infinity: The Great Mathrematical Problems (Basic Books, New York, 2013; Alpina Nonfiction, Moscow, 2015).

    Google Scholar 

  4. T.-Y. Li and J. Yorke, Am. Math. Monthly 82, 985 (1975).

    Article  Google Scholar 

  5. J. Lighthill, Proc. Roy. Soc. Lond. A 407, 35 (1986).

    Article  ADS  Google Scholar 

  6. Yu. A. Kravtsov, Usp. Fiz. Nauk 158, 93 (1989).

    Article  MathSciNet  Google Scholar 

  7. B. M. Shchigolev, Mathematical Processing of Observations (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  8. A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, et al., Phys. Rev. E 64, 021915 (2001).

    Article  ADS  Google Scholar 

  9. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, et al., Usp. Fiz. Nauk 172, 31 (2002).

    Article  Google Scholar 

  10. D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  11. Chaos, Ed. by A. V. Holden (Princeton Univ. Press, Princeton, NJ, 1986).

  12. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  13. A. B. Medvinsky and A. V. Rusakov, Chaos, Solitons & Fractals 44, 390 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    Article  ADS  Google Scholar 

  15. G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani, Phys. Rep. 356, 367 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. R. M. May, Science 186, 645 (1974).

    Article  ADS  Google Scholar 

  17. R. M. May, J. Theor. Biol. 49, 511 (1975).

    Article  Google Scholar 

  18. A. Hastings and T. Powell, Ecology 71, 896 (1991).

    Article  Google Scholar 

  19. W. Murdoch and A. Oaten, Adv. Ecol. Res. 9, 1 (1975).

    Article  Google Scholar 

  20. M. Scheffer, Oikos 62, 271 (1991).

    Article  Google Scholar 

  21. R. A. Fisher, Ann. Eugenics 7, 355 (1937).

    Article  Google Scholar 

  22. D. Grunbaum and A. Okubo, in Frontiers in Mathematical Biology, Lecture Notes in Biomathematics, Vol. 100, ed. by S. A. Levin (Springer, Berlin, 1994).

  23. T. Wyatt, Thalassia Jugoslavica 7, 435 (1971).

    Google Scholar 

  24. A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, New York, 1980).

    MATH  Google Scholar 

  25. P. Turchin, Complex Population Dynamics. A Theoretical/ Empirical Synthesis (Princeton Univ. Press, Princeton, NJ, 2003).

    MATH  Google Scholar 

  26. P. Turchin and I. Hanski, Am. Nat. 149, 842 (1997).

    Article  Google Scholar 

  27. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, et al., SIAM Rev. 44, 311 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. B. Medvinsky, A. E. Bobyrev, V. A. Burmensky, et al., Russ. J. Numer. Analysis Math. Modelling 30, 55 (2015).

    Article  Google Scholar 

  29. A. M. Ghilarov, Population Dynamics of Freshwater Planktonic Crustaceans (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  30. S. Hülsmann, K. Rinke, and W. M. Mooij, Oikos 110, 43 (2005).

    Article  Google Scholar 

  31. Z. Zak s, M. Szkudlarek, M. Wozniak, et al., Electron. J. Polish Agricult. Univ. 6, 4 (2003).

    Google Scholar 

  32. A. Kowalska, K. Demska-Zakes, and Z. Zakes, Electron. J. Polish Agricult. Univ. 9, 5 (2006).

    Google Scholar 

  33. M. Pascual, Proc. Roy. Soc. Lond. B 251, 1 (1993).

    Article  ADS  Google Scholar 

  34. O. L. Zhdanova and E. Ya. Frisman, Zh. Obshch. Biol. 72, 214 (2011).

    Google Scholar 

  35. J. Maquet, C. Letellier, and L. A. Aguirre, J. Math. Biol. 55, 21 (2007).

    Article  MathSciNet  Google Scholar 

  36. R. K. Upadhyay, N. Kumari, and V. Rai, Math. Biosci. 223, 47 (2010).

    Article  MathSciNet  Google Scholar 

  37. E. Ott, Chaos in Dynamical Systems (Cambridge Univ. Press, Cambridge, 2002).

    Book  MATH  Google Scholar 

  38. M. T. Rosenstein, J. J. Collins, and C. J. de Luca, Physica D 65, 117 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Kantz, Phys. Lett. A 185, 77 (1994).

    Article  ADS  Google Scholar 

  40. A. B. Medvinsky and A. B. Rusakov, in Problems in EconomicHistory: Theory and Practica, Ed. by V. V. Zaparii (UMTs-UPI, Yekaterinbirg, 2011), p. 248 [in Russian].

  41. A. B. Medvinsky, Nonlin. Dynam. Psychol. Life Sci. 13, 311 (2009).

    MathSciNet  Google Scholar 

  42. A. E. Bobyrev, V. A. Burmensky, E. A. Kriksunov, et al., Biophysics (Moscow) 57 (1), 115 (2012).

    Article  Google Scholar 

  43. P. Turchin and A. D. Taylor, Ecology 73, 289 (1992).

    Article  Google Scholar 

  44. H. Poincaré, Acta Mathematica 13, 1 (1890).

  45. J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Europhys. Lett. 5, 973 (1987).

    Article  ADS  Google Scholar 

  46. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, Phys. Rep. 438, 237 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. B. Medvinsky, B. V. Adamovich, A. Chakraborty, et al., Ecol. Complexity 23, 61 (2015).

    Article  Google Scholar 

  48. A. Rényi, Probability Theory (North-Holland, Amsterdam, 1970).

    MATH  Google Scholar 

  49. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems: An Introduction (Cambridge Univ. Press, Cambridge, 2001).

    MATH  Google Scholar 

  50. R. V. Solé and J. Bascompte, Self-Organization in Complex Ecosystems (Princeton Univ. Press, Princeton, NJ, 2006).

    Google Scholar 

  51. W. M. Scheffer, Am. Nat. 124, 798 (1984).

    Article  Google Scholar 

  52. F. A. Ascioti, E. Beltrami, T. O. Caroil, and W. Creighton, J. Plankton Res. 15, 603 (1993).

    Article  Google Scholar 

  53. S. Ellner and P. Turchin, Am. Nat. 145, 343 (1995).

    Article  Google Scholar 

  54. G. C. Varley, J. Anim. Ecol. 18, 117 (1949).

    Article  Google Scholar 

  55. E. C. Voles, Mice and Lemmings: Problems in Population Dynamics (Oxford Univ. Press, Oxford, 1942).

    Google Scholar 

  56. A. D. Middleton, J. Anim. Ecol. 3, 231 (1934).

    Article  Google Scholar 

  57. R. A. Rausch and A. M. Pearson, J. Wildl. Manag. 36, 249 (1972).

    Article  Google Scholar 

  58. C. Elton and M. Nicholson, J. Anim. Ecol. 11, 215 (1942).

    Article  Google Scholar 

  59. J. W. Jones, Fur Farming in Canada (Commission of Conservation, Committee on Fisheries, Game, and Fur-Bearing Animals, Ottawa, 1914).

    Google Scholar 

  60. C. Elton and M. Nicholson, J. Anim. Ecol. 11, 96 (1942).

    Article  Google Scholar 

  61. D. A. MacLulich, J. Wildl. Manag. 21, 293 (1957).

    Article  Google Scholar 

  62. H. N. Southern, in Ecology of Small Mammals, Ed. by D. M. Stoddard (Chapman & Hall, London, 1979), p. 103.

  63. T. Saitoh, Oecologia 73, 382 (1987).

    Article  Google Scholar 

  64. H. Henttonen, J. Tas, J. Viitala, and A. Kaikusalo, Mem. Soc. Fauna Flora Fenn. 60, 84 (1984).

    Google Scholar 

  65. T. Ikegami and K. Kaneko, Chaos 2, 397 (1992).

    Article  ADS  Google Scholar 

  66. P. Turchin and S. Ellner, Ecology 81, 3099 (2000).

    Article  Google Scholar 

  67. L. Becks, F. M. Hilker, H. Malchow, et al., Nature 435, 1226 (2005).

    Article  ADS  Google Scholar 

  68. E. Beninca, J. Huisman, R. Herkloss, et al., Nature 451, 822 (2008).

    Article  ADS  Google Scholar 

  69. A. G. Aronov, T. I. Aronova, B. P. Vlasov, et al., Water Resources of the Narochansky National Park (Riftur Print, Minsk, 2012) [in Russian].

    Google Scholar 

  70. P. A. Dixon, M. J. Milicich, and G. Sugihara, Science 283, 1528 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Medvinsky.

Additional information

Original Russian Text © A.B. Medvinsky, N.I. Nurieva, A.V. Rusakov, B.V. Adamovich, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 107–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvinsky, A.B., Nurieva, N.I., Rusakov, A.V. et al. Deterministic chaоs and the problem of predictability in population dynamics. BIOPHYSICS 62, 92–108 (2017). https://doi.org/10.1134/S0006350917010122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010122

Keywords

Navigation