Skip to main content
Log in

Influence of interstitial fluid dynamics on growth and therapy of angiogenic tumor. Analysis by mathematical model

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We have developed a spatially distributed mathematical model of angiogenic tumor growth in tissue with account of interstitial fluid dynamics and bevacizumab monotherapy. In this model the process of neovascularization is initiated by tumor cells in a state of metabolic stress, vascular endothelial growth factor (VEGF) being its main mediator. The model takes into consideration the convection flows arising in dense tissue due to active proliferation and migration of tumor cells as well as interstitial fluid inflow from blood vascular system, its outflow through lymphatic system and redistribution in the area of tumor growth. The work considers the diffusive approximation of interstitial fluid dynamics in tumor and normal tissue. Numerical study of the model showed that in absence of therapy a peritumoral edema is formed due to the increase of interstitial fluid inflow from angiogenic capillaries. In the case of rapid interstitial fluid outflow through lymphatic system and its fast transport from necrotic zone to normal tissue the regimes of full growth stop are observed in case of low-invasive tumor. Under bevacizumab monotherapy the peritumoral edema vanishes and low-invasive tumor may not only decelerate its growth, but also start shrinking for a large range of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Steel, Cell Tissue Kinet. 13 (4), 451 (1980).

    Google Scholar 

  2. R. P. Araujo and D. S. McElwain, Bull. Math. Biol. 66 (5), 1039 (2004).

    Article  MathSciNet  Google Scholar 

  3. J. Folkman, New Engl. J. Med. 285 (21), 1182 (1971).

    Article  Google Scholar 

  4. W. Dou, S. Ruan, Y. Chen, et al., Image Vision Comput. 25 (2), 164 (2007).

    Article  Google Scholar 

  5. D. T. Blumenthal, M. G. H. Parreno, J. Batten, and M. C. Chamberlain, Cancer 113 (12), 3349 (2008).

    Article  Google Scholar 

  6. J. Pallud, E. Mandonnet, C. Deroulers, et al., Ann. Neurol. 67 (3), 398 (2010).

    Google Scholar 

  7. T. H. Adair and J.-P. Montani, Angiogenesis (Morgan & Claypool Life Sciences Series, San Rafael, CA, 2010).

    Google Scholar 

  8. P. Carmeliet and R. K. Jain, Nature 407 (6801), 249 (2000).

    Article  Google Scholar 

  9. B. Drogat, P. Auguste, D. T. Nguyen, et al., Cancer Res. 67 (14), 6700 (2007).

    Article  Google Scholar 

  10. R. K. Jain, E. Di Tomaso, D. G. Duda, et al., Nature Rev. Neurosci. 8 (8), 610 (2007).

    Article  Google Scholar 

  11. T. M. Pocock, R. R. Foster, and D. O. Bates, Am. J. Physiol.: Heart Circ. Physiol. 286 (3), H1015 (2004).

    Google Scholar 

  12. M. Badoual, C. Gerin, C. Deroulers, et al., Cell Proliferation 47 (4), 369 (2014).

    Article  Google Scholar 

  13. R. K. Jain, R. T. Tong, and L. L. Munn, Cancer Res. 67 (6), 2729 (2007).

    Article  Google Scholar 

  14. A. Hawkins-Daarud, R. C. Rockne, A. R. Anderson, and K. R. Swanson, Front. Oncol. 3, 66 (2013).

    Article  Google Scholar 

  15. G. von Minckwitz, H. Eidtmann, M. Rezai, et al., New Engl. J. Med. 366 (4), 299 (2012).

    Article  Google Scholar 

  16. R. Rockne, J. K. Rockhill, M. Mrugala, et al., Phys. Med. Biol. 55 (12), 3271 (2010).

    Article  Google Scholar 

  17. A. V. Kolobov and M. B. Kuznetsov, Biophysics 60 (3), 449 (2015).

    Article  Google Scholar 

  18. A. V. Kolobov, V. V. Gubernov, and M. B. Kuznetsov, Russ. J. Numeric. Anal. Math. Model. 30 (5), 289 (2015).

    Google Scholar 

  19. A. Giese, R. Bjerkvig, M. E. Berens and M. Westphal, J. Clin. Oncol. 21, 1624 (2003).

    Article  Google Scholar 

  20. J. M. P. C. Holash, P. C. Maisonpierre, D. Compton, et al., Science 284 (5422), 1994 (1999).

    Article  Google Scholar 

  21. A. V. Gusev and A. A. Poleshaev, Kratk. Soobshch. Fiz. FIAN Nos. 11–12, 85 (1997).

    Google Scholar 

  22. R. F. Schmidt and G. Thews, Human Physiology (Springer, 1983).

    Book  Google Scholar 

  23. O. N. Pyaskovskaya, D. L. Kolesnik, A. V. Kolobov, et al., Exp. Oncol. 30, 269 (2008).

    Google Scholar 

  24. J. M. Kelm, C. D. Sanchez-Bustamante, E. Ehler, et al., J. Biotechnol. 118 (2), 213 (2005).

    Article  Google Scholar 

  25. K. J. Kim, B. Li, J. Winer, et al., Nature 362, 841 (1993).

    Article  ADS  Google Scholar 

  26. J. Kleinheinz, S. Jung, K. Wermker, et al., Head Face Med. 6 (1), 17 (2010).

    Article  Google Scholar 

  27. N. Papadopoulos, J. Martin, Q. Ruan, et al., Angiogenesis 15, 171 (2012).

    Article  Google Scholar 

  28. F. Milde, M. Bergdorf and P. Koumoutsakos, Biophys. J. 95 (7), 3146 (2008).

    Article  ADS  Google Scholar 

  29. A. T. Falk, J. Barriere, E. Francois, and P. Follana, Crit. Rev. Oncol. Hematol. 94 (3), 311 (2015).

    Article  Google Scholar 

  30. I. B. Petrov and A. I. Lobanov, Lectures in Computational Mathematics (Internet Univ. Inform. Technol., Moscow, 2006) [in Russian].

    Google Scholar 

  31. J. P. Boris and D. L. Book, J. Comput. Phys. 11 (1), 38 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Kuznetsov.

Additional information

Original Russian Text © M.B. Kuznetsov, V.V. Gubernov, A.V. Kolobov, 2017, published in Biofizika, 2017, Vol. 62, No. 1, pp. 151–160.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, M.B., Gubernov, V.V. & Kolobov, A.V. Influence of interstitial fluid dynamics on growth and therapy of angiogenic tumor. Analysis by mathematical model. BIOPHYSICS 62, 129–137 (2017). https://doi.org/10.1134/S0006350917010110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917010110

Keywords

Navigation