Skip to main content
Log in

An approach for the assessment of the order of disruption of the elements of protein structure upon protein unfolding: A study of carbonic anhydrase B

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An experimental approach named μ-analysis has been developed in order to elucidate the sequence of the loss of ordered structure by elements of a protein during the denaturation of the molecule. This approach is applicable for the analysis of proteins that fold (unfold) in a multistep process that involve the formation (destruction) of a range of intermediate states. The concept of the approach consists in systematic analysis of mutagenized forms of the protein with point substitutions of hydrophobic amino-acid residues and additional cysteine bridges. Importantly, the substitutions of the amino-acid residues must be localized to the same structural elements of the protein. Point substitutions of hydrophobic amino-acid residues mainly provide information on the structural elements of the protein that are disrupted at the final stages of protein denaturation. The addition of cysteine bridges to the surface of the protein molecule allows investigation of structural elements of the protein that are the first to unfold upon protein denaturation. Calorimetric studies of non-equilibrium melting of bovine carbonic anhydrase B yielded information on the rate constants of the unfolding of ten mutant forms of the protein. The analysis of the effects of mutations on the rates of different stages of protein unfolding allowed for elucidation of the order of disruption of structural elements of carbonic anhydrase B upon thermal denaturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (KDU, Moscow, 2002; Academic, New York, 2002).

    Google Scholar 

  2. A. R. Fersht, L. S. Itzhaki, N. F. El Masry, et al., Proc. Natl. Acad. Sci. USA. 91, 10426 (1994).

    Article  ADS  Google Scholar 

  3. A. Matouschek and A. R. Fersht, in Methods Enzymology, Ed. by J. J. Langone (Acad. Press, New York, 1991), pp. 82–112.

  4. A. R. Fersht, A. Matouschek, and L. Serrano, J. Mol. Biol. 224, 771 (1992).

    Article  Google Scholar 

  5. A. Matouschek, J. T. Kellis, Jr., L. Serrano, et al., Nature 346, 440 (1990).

    Article  ADS  Google Scholar 

  6. M. J. Parker, J. Spencer, and A. R. Clarke, J. Mol. Biol. 253, 771 (1995).

    Article  Google Scholar 

  7. T. N. Melnik, T. V. Povarnitsyna, A. S. Glukhov, and B. S. Melnik, PLOS ONE 7 (11), e48604 (2012).

    Article  ADS  Google Scholar 

  8. J. Clarke and A. R. Fersht, Biochemistry 32, 4322 (1993).

    Article  Google Scholar 

  9. V. Ramakrishnan, S. P. Srinivasan, S. M. Salem, et al., Proteins 80, 920 (2012).

    Article  Google Scholar 

  10. J. Mansfeld, G. Vriend, B. B. Van den Burg, et al., Biochemistry 38, 8240 (1999).

    Article  Google Scholar 

  11. V. S. Dani, C. Ramakrishnan, and R. Varadarajan, Prot. Eng. 16, 187 (2003).

    Article  Google Scholar 

  12. I. Sanchez-Romero, A. Ariza, K. S. Wilson, et al., PLOS ONE 8, e70013 (2013).

    Article  ADS  Google Scholar 

  13. B. S. Melnik, G. S. Nagibina, A. S. Glukhov, et al., Biochim. Biophys. Acta (2016) (in press). http://dx.doi.org/. doi 10.1016/j.bbapap.2016.09.006

    Google Scholar 

  14. G. V. Semisotnov, N. A. Rodionova, V. P. Kutyshenko, et al., FEBS Lett. 224, 9 (1987).

    Article  Google Scholar 

  15. G. V. Semisotnov, V. N. Uversky, I. V. Sokolovsky, et al., J. Mol. Biol. 213, 561 (1990).

    Article  Google Scholar 

  16. B. S. Melnik, V. V. Marchenkov, S. R. Evdokimov, et al., Vestn. S-Peterb. Gos. Univ. 4 (1), 10 (2007).

    Google Scholar 

  17. B. S. Melnik, V. V. Marchenkov, S. R. Evdokimov, et al., Biochem. Biophys. Res. Commun. 369 (2), 701 (2008).

    Article  Google Scholar 

  18. J. M. Armstrong, D. V. Myers, J. A. Verproorte, and J. T. Edsall, J. Biol. Chem. 241, 5137 (1966).

    Google Scholar 

  19. Yu. M. Torchinskii, Sulfur in Proteins (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. A. A. Senin, S. A. Potekhin, E. I. Tiktopulo, and V. V. Filomonov, J. Therm. Anal. Cal. 62, 153 (2000).

    Article  Google Scholar 

  21. P. L. Privalov and S. A. Potekhin, in Methods in Enzymology, Ed. by C. H. W. Hirs and S. N. Timasheff (Academic Press, Orlando, 1986), Vol. 131, pp. 1–51.

  22. A. E Lyubarev and B. L. Kurganov, Usp. Biol. Khim. 40, 43 (2000).

    Google Scholar 

  23. A. E Lyubarev and B. L. Kurganov, Biochemistry (Moscow) 63, 516 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Melnik.

Additional information

Original Russian Text © B.S. Melnik, G.S. Nagibina, A.S. Glukhov, T.N. Melnik, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1098–1108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnik, B.S., Nagibina, G.S., Glukhov, A.S. et al. An approach for the assessment of the order of disruption of the elements of protein structure upon protein unfolding: A study of carbonic anhydrase B. BIOPHYSICS 61, 860–870 (2016). https://doi.org/10.1134/S0006350916060178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916060178

Keywords

Navigation