Skip to main content
Log in

Ca2+-dependent aggregation and permeabilization of erythrocytes by ω-hydroxypalmitic and α, ω-hexadecandioic acids

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This paper presents the data and describes the Ca2+-dependent effect of the products of ω-oxidation of palmitic acid, as well as ω-hydroxypalmitic and α, ω-hexadecandioic acids, on rat erythrocytes. It is shown that in the presence of Ca2+ these acids induce aggregation of erythrocytes, which is accompanied by a reduction in the number of single cells in suspension. As well, a release of K+ from the cells occurs, which indicates the permeabilization of the plasma membrane. However, ω-hydroxypalmitic and α, ω-hexadecandioic acids are inferior to palmitic acid in their ability to induce Ca2+-dependent erythrocyte permeabilization. Bovine serum albumin and blood serum inhibit the effects of palmitic acid. At the same time, the influence of these agents on the effects of ω-hydroxypalmitic and α, ω-hexadecandioic acids appears to be much weaker. It is shown that ω-hydroxypalmitic and α, ω-hexadecandioic acids in the presence of Ca2+ induce an increase in the hydrodynamic diameter of single-walled lecithin liposomes, which indicates their fusion and (or) aggregation. The mechanisms of ω-hydroxypalmitic acid/Ca2+- and α, ω-hexadecandioic acid/Ca2+-induced effects on rat erythrocytes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mukerjee and K. J. Musels, Critical Micelle Concentration of Aqueous Surfactant Systems, NSRDS-NBS 36 (National Bureau of Standards, Washington, DC, 1971).

    Google Scholar 

  2. A. Arouri and O. G. Mouritsen, Prog. Lipid Res. 52 (1), 130 (2013).

    Article  Google Scholar 

  3. F. Kamp and J. A. Hamilton, Proc. Natl. Acad. Sci. USA 89, 11367 (1992).

    Article  ADS  Google Scholar 

  4. F. F. Severin, I. I. Severina, Y. N. Antonenko, et al., Proc. Natl. Acad. Sci. U. S. A. 107 (2), 663 (2010).

    Article  ADS  Google Scholar 

  5. A. Agafonov, E. Gritsenko, K. Belosludtsev, et al., Biochim. Biophys. Acta 1609, 163 (2003).

    Article  Google Scholar 

  6. K. N. Belosludtsev, N. V. Belosludtseva, and G. D. Mironova, Biochemistry (Moscow) 70 (7), 815 (2005).

    Article  Google Scholar 

  7. K. N. Belosludtsev, A. S. Trudovishnikov, N. V. Belosludtseva, et al., J. Membr. Biol. 237 (1), 9 (2010).

    Article  Google Scholar 

  8. K. N. Belosludtsev and G. D. Mironova, Patol. Fiziol. Eksp. Terap. No. 3, 20 (2012).

    Google Scholar 

  9. R. J. Sanders, R. Ofman, F. Valianpour, et al., J. Lipid Res. 46, 1001 (2005).

    Article  Google Scholar 

  10. R. J. Wanders, J. Komen, and S. Kemp, FEBS J. 278, 182 (2011).

    Article  Google Scholar 

  11. M. Orellana, R. Rodrigo, and E. Valdes, Gen. Pharmacol. 31, 817 (1998).

    Article  Google Scholar 

  12. J. H. Tonsgard and G. S. Getz, J. Clin. Invest. 76, 816 (1985).

    Article  Google Scholar 

  13. J. H. Tonsgard, J. Pediatr. 109, 440 (1986).

    Article  Google Scholar 

  14. C. Hu, S. Lin, and Z. Cai, Anal. Methods 6, 8207 (2014).

    Article  Google Scholar 

  15. M. V. Dubinin, S. I. Adakeeva, and V. N. Samartsev, Biochemistry (Moscow) 78 (4), 412 (2013).

    Article  Google Scholar 

  16. M. V. Dubinin, V. N. Samartsev, M. E. Astashev, et al., Eur. Biophys. J. 43 (10–11), 565 (2014).

    Article  Google Scholar 

  17. A. V. Agafonov, E. N. Gritsenko, E. A. Shlyapnikova, et al., J. Membr. Biol. 215 (1), 57 (2007).

    Article  Google Scholar 

  18. L. Wojtczak and P. Schönfeld, Biochim. Biophys. Acta 1183, 41 (1993).

    Article  Google Scholar 

  19. S. Ferdinandusse, S. Denis, C. Van Roermund, et al., J. Lipid Res. 45, 1104 (2004).

    Article  Google Scholar 

  20. L. V. Chernomordik and M. M. Kozlov, Nat. Struct. Mol. Biol. 15, 675 (2008).

    Article  Google Scholar 

  21. J. A. Browning, J. C. Ellory, and J. S. Gibson, Contrib. Nephrol. 152, 241 (2006).

    Article  Google Scholar 

  22. D. Papahadjopoulos, S. Nir, and N. Düzgünes, J. Bioenerg. Biomembr. 22, 157 (1990).

    Article  Google Scholar 

  23. O. Baskurt, B. Neu, and H. J. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, FL, 2011).

    Book  Google Scholar 

  24. M. Zoratti and I. Szabo, Biochim. Biophys. Acta 1241, 139 (1995).

    Article  Google Scholar 

  25. M. V. Dubinin, A. A Vedernikov, S. I. Adakeeva, et al., Biol. Membr. 30 (5–6), 364 (2013).

    Google Scholar 

  26. J. H. Tonsgard and S. C. Meredith, Biochem. J. 276, 569 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Additional information

Original Russian Text © M.V. Dubinin, A.E. Stepanova, K.A. Scherbakov, V.N. Samartsev, K.N. Belosludtsev, 2016, published in Biofizika, 2016, Vol. 61, No. 5, pp. 916–921.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Stepanova, A.E., Scherbakov, K.A. et al. Ca2+-dependent aggregation and permeabilization of erythrocytes by ω-hydroxypalmitic and α, ω-hexadecandioic acids. BIOPHYSICS 61, 901–905 (2016). https://doi.org/10.1134/S0006350916050055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916050055

Keywords

Navigation