Skip to main content
Log in

Relaxation folding and the principle of the minimum rate of energy dissipation for conformational motions in a viscous medium

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A numerical simulation of the folding of a model polymer chain of 50 units with valence bonds of a fixed length and fixed valence angle values has been performed using the strong friction approximation. The rate of energy dissipation in the system has been analyzed for conformational motions along a trajectory determined by the equations of mechanics and the trajectories characterized by random and variable deviations from the mechanical path. The validity of the principle of the minimum average rate of the energy dissipation for the conformational relaxation of a macromolecule in a viscous medium has been demonstrated. A profile of the relaxation energy funnel for the folding of a macromolecular chain has been constructed. Slow and rapid stages of folding could be distinguished in the energy funnel profile; the final state was separated from the nearest conformations of the folded chain by an energy gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Levinthal, J. Chem. Phys. 65, 44 (1968).

    Google Scholar 

  2. P. G. Wolynes, Phil. Trans. R. Soc. Lond. 363, 453 (2005).

    Article  ADS  Google Scholar 

  3. J. N. Onuchic and P. G. Wolynes, Curr. Opin. Struct. Biol. 14, 70 (2004).

    Article  Google Scholar 

  4. E. R. Henry, R. B. Best, and W. A. Eaton, Proc. Natl. Acad. Sci. USA 110, 17880 (2013).

    Article  ADS  Google Scholar 

  5. J. Kubelka, T. K. Chiu, D. R. Davies, et al., J. Mol. Biol. 359, 546 (2006).

    Article  Google Scholar 

  6. E. I. Shakhnovich and A. M. Gutin, Nature 346, 773 (1990).

    Article  ADS  Google Scholar 

  7. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (Universitet, Moscow, 2002; Academic Press, New York, 2002).

    Google Scholar 

  8. K. A. Dill and J. L. MacCallum, Science 338, 1042 (2012).

    Article  ADS  Google Scholar 

  9. R. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011).

    Article  ADS  Google Scholar 

  10. E. Shakhnovich, Chem. Rev. 106, 1559 (2006).

    Article  Google Scholar 

  11. K. V. Shaitan, Biophysics (Moscow) 60, 692 (2015).

    Article  Google Scholar 

  12. D. A. Dolgikh, O. B. Ptitsyn, A. N. Fedorov, et al., Mol. Biol. (Moscow) 26, 1242 (1992).

    Google Scholar 

  13. K. V. Shaitan and A. B. Rubin, Mol. Biol. (Moscow) 14, 1323 (1980).

    Google Scholar 

  14. K. V. Shaitan and A. B. Rubin, Mol. Biol. (Moscow) 15, 368 (1981).

    Google Scholar 

  15. K. V. Shaitan, Biofizika 9, 949 (1994).

    Google Scholar 

  16. K. V. Shaitan, in Stochastic Dynamics of Reacting Biomolecules, Ed. by W. Ebeling, L. Schimansky-Gefer, and Y. M. Romanovsky (World Scientific, Singapore, 2003), pp. 283–308.

  17. A. B. Rubin, Biophysics, Vol. 1: Theoretical Biophysics (Inst. Comput. Res., Izhevsk, 2013) [in Russian].

  18. L. Onsager, Phys. Rev. 38, 2265 (1931).

    Article  ADS  Google Scholar 

  19. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3rd ed. (Wiley Interscience, New York, 1968; Research Center “Regular and Stochastic Dynamics,” Izhevsk, 2001).

    MATH  Google Scholar 

  20. K. V. Shaitan and S. S. Saraikin, Biophysics (Moscow) 45, 397 (2000).

    Google Scholar 

  21. S. M. Targ, A Concise Course in Theoretical Mechanics, 10th ed. (Vysshaya Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  22. D. Frenkel and B. Smit, Understanding Molecular Simulation. From Algorithms to Applications (Academic Press, New York, 2002).

    MATH  Google Scholar 

  23. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom, Moscow, 2011) [in Russian].

    MATH  Google Scholar 

  24. K. V. Shaitan and I. V. Fedik, Biophysics (Moscow) 60, 335 (2015).

    Article  Google Scholar 

  25. N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shaitan.

Additional information

Original Russian Text © K.V. Shaitan, M.A. Lozhnikov, G.M. Kobelkov, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 629–637.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaitan, K.V., Lozhnikov, M.A. & Kobelkov, G.M. Relaxation folding and the principle of the minimum rate of energy dissipation for conformational motions in a viscous medium. BIOPHYSICS 61, 531–538 (2016). https://doi.org/10.1134/S0006350916040205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040205

Keywords

Navigation