Skip to main content
Log in

On the “swelling” of mitochondria under palmitic acid, calcium, and hypotension treatment

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The high-amplitude swelling of mitochondria is critically considered. In contrast to numerous statements by some authors about a marked swelling of isolated liver mitochondria under the influence of palmitic acid, calcium ions, or hypotension, we have shown that mitochondria are generally not subject to highamplitude swelling. According to optical-microscopy data even during long-lasting incubation (in distilled water) where full hypotension takes place, the size of liver mitochondria (approximately 1 µm) can be enlarged by no more than by 40%. Under short-lasting hypotension or the addition of palmitic acid the mitochondrial diameter becomes greater by only 20% or remains virtually unchanged. The light scattering of the mitochondrial suspension measured using a photometer according to the decrease in optical density declines by 2.5 times. A decrease in the light scattering in hypotension or via the addition of palmitic acid or calcium (in an isotonic medium) occurs because of damage (even destruction) to the outer membrane, rather than due to the swelling of mitochondria, as was previously believed. The inner membrane is not significantly expanded. The destruction of the outer membrane reduces the probability of light scattering by each mitochondrion at the boundary layer of the water/membrane interface. Release of substances from the matrix resulting in a decrease of its refractive index may additionally contribute to the decrease in light scattering. Palmitic acid and calcium (at concentrations of 10 to 100 µM) cause permeabilization and disruption of the outer membrane gradually, over several minutes. Full hypotension activates this process very rapidly, viz., within a fraction of a second. Under low ionic-strength conditions, the addition of calcium leads to neutralization of negative charges on the membrane surface, which induces aggregation of mitochondria, thus enhancing light scattering and creating the illusion of mitochondrial swelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of the Cell, 5th ed. (Garland Scince, New York, 2007; Mir, Moscow, 2013), Vol. 2.

    Google Scholar 

  2. A. L. Lehninger, Principles of Biochemistry (W. H. Freeman, New York, 1970; Mir. Moscow, 1974).

  3. A. L. Lehninger, The Mitochondrion: Molecular Basis of Structure and Function (W. A. Benjamin, New York, 1964; Mir, Moscow, 1966).

  4. V. I. Olenev, T. B. Suslova, and Yu. A. Vladimirov, Stud. Biophys. 2, 147 (1976).

    Google Scholar 

  5. P. Bernardy and V. Petronelly, J. Bioenerg. Biomembr. 28, 131 (1996).

    Article  Google Scholar 

  6. M. Crompton, Biochem. J. 341, 233 (1999).

    Article  Google Scholar 

  7. P. Bernardy, Phisiol. Rev. 79, 1127 (1999).

    Google Scholar 

  8. K. N. Belosludtsev, Candidate’s Dissertation in Biology (Pushchino, 2005).

    Google Scholar 

  9. V. F. Antonov, A. S. Ivanov, and E. A. Krepanova, in Free Radical Oxidation in the Norm and Pathology (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  10. G. Mironova, O. Gateau-Roesch, C. Levrat, et al., J. Bioenerg. Biomembr. 33, 319 (2001).

    Article  Google Scholar 

  11. V. N. Lopatin, Light Scattering Methods in Analysis of Disperse Biological Media (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  12. N. L. Vekshin, M. S. Frolova, V. I. Kovalev, and E. A. Begunova, Biophysics (Moscow) 60, 101 (2015).

    Article  Google Scholar 

  13. N. L. Vekshin, Fluorescence Spectroscopy of Polymers Foton-Vek, Pushchino, 2006) [in Russian].

    Google Scholar 

  14. N. L. Vekshin, Photonics of Biopolymers (Springer, Berlin, 2002).

    Book  Google Scholar 

  15. M. S. Frolova and N. L. Vekshin, J. Fluoresc. 24, 1061 (2014).

    Article  Google Scholar 

  16. H. Tedeschi and D. Harris, Arch. Biochem. Biophys. 58 (1), 52 (1955).

    Article  Google Scholar 

  17. H. Tedeschi and D. Harris, Biochim. Biophys. Acta 28 (2), 392 (1958).

    Article  Google Scholar 

  18. C. Stoner and H. Sirak, J. Cell Biol. 43 (3), 521 (1969).

    Article  Google Scholar 

  19. A. Beavis, R. Brannan, and K. Garlid, J. Biol. Chem. 260 (25), 13424 (1985).

    Google Scholar 

  20. K. Garlid and A. Beavis, J. Biol. Chem. 260 (25), 13434 (1985).

    Google Scholar 

  21. G. Gotterer, T. Thompson, and A. Lehninger, J. Biophys. Biochem. Cytol. 10, 15 (1961).

    Article  Google Scholar 

  22. S. Massari, J. Biol. Chem. 271, (50), 31942 (1996).

    Google Scholar 

  23. M. Reiss, A. Costa, R. Carlson, et al., Anesth. Analg. 106 (4), 1049 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Vekshin.

Additional information

Original Russian Text © D.N. Kurdukov, N.L. Vekshin, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 736–743.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdukov, D.N., Vekshin, N.L. On the “swelling” of mitochondria under palmitic acid, calcium, and hypotension treatment. BIOPHYSICS 61, 622–628 (2016). https://doi.org/10.1134/S000635091604014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091604014X

Keywords

Navigation