Skip to main content
Log in

The role of p38 protein kinase in mouse responses to low-intensity electromagnetic radiation of the centimeter range

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The role of p38 mitogen-activated protein kinase in regulating the cell responses to ultralow-intensity centimeter microwaves (8.15–18.0 GHz, 1 µW/cm2, 1 h) was studied in male BalbC mice. Mice were tested for the level of protein phosphorylation in the NF-κB (p65 and IKK), JNK, and IRF3 signaling cascades expression of TLR4 and stress-inducible heat shock proteins Hsp72 and Hsp90 in splenic lymphocytes and pro- and anti-inflammatory cytokines and IL-10 in the blood serum. An inhibitor of the p38 signaling pathway (p38 inhibitor XI) was shown to reduce the sensitivity to ultralow-intensity ultrahigh-frequency electromagnetic radiation. This was evident from a decrease in radiation-induced activation of the NF-κB signaling pathway, expression of Hsp72 and Hsp90 in splenic cells, and an accumulation of proinflammatory cytokines (IL-6, IL-17, TNF-α, and IFN-γ) in the blood serum of irradiated mice pretreated with p38 inhibitor XI. However, p38 inhibitor XI did not attenuate the activation of the p38 and IRF3 signaling pathways and overexpression of TLR4 in splenic cells of irradiated mice. It was assumed that p38 mitogenactivated protein kinase is involved in regulating the nonspecific defense responses does not determine the murine sensitivity to ultralow-intensity electromagnetic waves of the centimeter range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UHF EMR:

ultrahigh-frequency electromagnetic radiation

IRF:

interferon regulatory factor

JNK:

c-Jun N-terminal kinase

p38:

stress-activated protein kinase 2

References

  1. L. Gherardini, G. Ciuti, S. Tognarelli, and C. Cinti, Int. J. Mol. Sci. 15 (4), 5366 (2014).

    Article  Google Scholar 

  2. O. V. Glushkova, Doctoral Dissertation in Biology (Pushchino, 2015).

    Google Scholar 

  3. R. Seger and E. G. Krebs, FASEB J. 9 (9), 726 (1995).

    Google Scholar 

  4. Y. L. Hu, S. Li, J. Y. Shyy, and S. Chien, Am. J. Physiol. 277, 1593 (1999).

    Google Scholar 

  5. Y. Yang, S. C. Kim, T. Yu, et al., Mediators Inflamm. 352371 (2014). doi doi 10.1155/2014/352371

    Google Scholar 

  6. O. Ananieva, J. Darragh, C. Johansen, et al., Nat. Immunol. 9 (9), 1028 (2008).

    Article  Google Scholar 

  7. A. Risco, C. del Fresno, A. Mambol, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (28), 11200 (2012).

    Article  ADS  Google Scholar 

  8. I. Belyaev, in Non-thermal Effects and Mechanisms of Interaction between Electromagnetic Fields and Living Matter, Ed. by L. Giuliani and M. Soffritti (Ramazzini Institute Bologna, Italy, 2010), pp. 187–218.

  9. E. G. Novoselova, E. E. Fesenko, V. R. Makar, and V. B. Sadovnikov, Bioelectrochem. Bioenerg. 49, 37 (1999).

    Article  Google Scholar 

  10. E. E. Fesenko, V. R. Makar, E. G. Novoselova, and V. B. Sadovnikov, Bioelectrochem Bioenerg. 49, 29 (1999).

    Article  Google Scholar 

  11. O. V. Glushkova, T. V. Novoselova, M. O. Khrenov, et al., Biofizika 53 (1), 93 (2008).

    Google Scholar 

  12. O. V. Glushkova, M. O. Khrenov, T. V. Novoselova, et al., Int. J. Radiat. Biol. 91 (4), 321 (2015).

    Article  Google Scholar 

  13. E. G. Novoselova, O. V. Glushkova, D. A. Cherenkov, et al., Biochemistry (Moscow) 71 (4), 376 (2006).

    Article  Google Scholar 

  14. W. Lumeras, L. Vidal, B. Vidal, et al., J. Med. Chem. 54 (22), 7899 (2011).

    Article  Google Scholar 

  15. J. D. Ashwell, Nat. Rev. Immunol. 6, 53 (2006).

    Article  Google Scholar 

  16. P. P. Roux and J. Blenis, Microbiol. Mol. Biol. Rev. 68, 320 (2004).

    Article  Google Scholar 

  17. A. Cuadrado and A. R. Nebreda, Biochem. J. 429 (3), 403 (2010).

    Article  Google Scholar 

  18. T. Zarubin and J. Han, Cell Res. 15, 11 (2005).

    Article  Google Scholar 

  19. R. H. Adams, A. Porras, G. Alonso, et al., Mol. Cell 6, 109 (2000).

    Article  Google Scholar 

  20. M. Allen, L. Svensson, M. Roach, et al., J. Exp. Med. 191, 859 (2000).

    Article  Google Scholar 

  21. A. Porras, S. Zuluaga, E. Black, et al., Mol. Biol. Cell 15, 922 (2004).

    Article  Google Scholar 

  22. D. Leszczynski, S, Joenvaara, J. Reivinen, and R. Kuokka, Differentiation 70, 120 (2002).

    Article  Google Scholar 

  23. H. Sauer, M. M. Bekhite, J. Hescheler, and M. Wartenberg, Exp. Cell Res. 304, 380 (2005).

    Article  Google Scholar 

  24. K. Nie and A. Henderson, J. Cell. Biochem. 90, 1197 (2003).

    Article  Google Scholar 

  25. J. Friedman, S. Kraus, Y. Hauptman, et al., Biochem. J. 405, 559 (2007).

    Article  Google Scholar 

  26. A. Q. Sheikh, T. Taghian, B. Hemingway, et al, J. Roy. Soc. Interface 10, 201205 (2013).

    Google Scholar 

  27. K. K. Kesari, R. Meena, J. Nirala, et al., Cell Biochem. Biophys. 68 (2), 347 (2014).

    Article  Google Scholar 

  28. L. L. Yang, Y. Zhou, W. D. Tian, et al., Neurotoxicology 52, 144 (2016).

    Article  Google Scholar 

  29. A. Kumar, Y. Takada, A. M. Boriek, and B. B. Aggarwal, J. Mol. Med. 82, 434 (2004).

    Article  Google Scholar 

  30. S. Ghosh and M. Karin, Cell 109, 81 (2002).

    Article  Google Scholar 

  31. N. Silverman and T. Maniatis, Genes Dev. 15, 2321 (2001).

    Article  Google Scholar 

  32. S. C. Sun and G. Xiao, Cancer Metastasis Rev. 22, 405 (2003).

    Article  Google Scholar 

  33. S. F. Eddy, S. Guo, E. G. Demicco, et al., Cancer Res. 65, 11375 (2005).

    Article  Google Scholar 

  34. I. Dominguez, G. E. Sonenshein, and D. C. Seldin, Cell Mol. Life Sci. 66 (11–12), 1850 (2009).

    Article  Google Scholar 

  35. Yu. L. Volodina and A. A. Shtil, Mol. Biol. (Moscow) 46 (3), 381 (2012).

    Article  Google Scholar 

  36. O. V. Glushkova, M. O. Khrenov, T. V. Novoselova, et al., Dokl. Ross. Akad. Nauk 464, 260 (2015).

    Google Scholar 

  37. L. Vermeulen, G. De Wilde, P. Van Damme, et al., EMBO J. 22, 1313 (2003).

    Article  Google Scholar 

  38. S. Terazawa, S. Mori, H. Nakajima, et al., PLOS ONE 10 (8), e0136311 (2015).

    Article  Google Scholar 

  39. E. G. Novoselova, M. O. Khrenov, O. V. Glushkova, et al., Mediators of Inflammation, 724838 (2014). doi doi 10.1155/2014/724838

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Glushkova.

Additional information

Original Russian Text © O.V. Glushkova, M.O. Khrenov, E.V. Vinogradova, S.M. Lunin, E.E. Fesenko, E.G. Novoselova, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 799–807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkova, O.V., Khrenov, M.O., Vinogradova, E.V. et al. The role of p38 protein kinase in mouse responses to low-intensity electromagnetic radiation of the centimeter range. BIOPHYSICS 61, 675–681 (2016). https://doi.org/10.1134/S0006350916040114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040114

Keywords

Navigation