Skip to main content
Log in

The effect of fixed valence metal ions on the free radical process of epinephrine autoxidation

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The physiologically active metal ions with fixed valence Ca2+ and Mg2+ were shown to accelerate epinephrine autoxidation at an alkaline pH, which proceeds via the known quinoid pathway and is accompanied by the generation of reactive oxygen species. A higher efficiency was observed for Ca2+ ions compared with Mg2+ ions. The activation of epinephrine autoxidation was evident from a decrease in the time of the initiation of the chain reaction to begin (i.e., the reaction lag) and an increase in the rate of both oxygen uptake and the formation of adrenochrome. Based on the observed effects, Ca2+ and Mg2+ cations were assumed to have the potential to play a role in the free radical processes that are associated with redox reactions in the cell and can also modulate the effect of epinephrine in the organism its oxidation via the quinoid pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bors, C. Michel, M. Saran, and E. Lengfelder, Biochim. Biophys. Acta 540 (1), 162 (1978).

    Article  Google Scholar 

  2. A. Bindoli, M. P. Rigobello, and L. Galzigna, Toxicol. Lett. 48 (1), 3 (1989).

    Article  Google Scholar 

  3. F. Marques, R. O. Duarte, J. J. Moura, and M. P. Bicho, Biopl. Signals 5, 275 (1996).

    Article  Google Scholar 

  4. R. Alhasan and D. Njus, Anal. Biochem. 381 (1), 142 (2008).

    Article  Google Scholar 

  5. P. Mucoz, S. Huenchuguala, I. Paris, and J. SeguraAguilar, Parkinsons Dis. 2012:920953 (2012). doi 10.1155/2012/920953

    Google Scholar 

  6. T. V. Sirota, Biomed. Khim. 61 (1), 115 (2015).

    Article  Google Scholar 

  7. T. V. Sirota, Vopr. Med. Khim. 45 (3), 263 (1999).

    MathSciNet  Google Scholar 

  8. T. V. Sirota, RF Patent 2144674 (2000).

    Google Scholar 

  9. T. V. Sirota, Biomed. Khim. 58 (1), 77 (2012).

    Article  Google Scholar 

  10. T. V. Sirota, Biomed. Khim. 59 (4), 399 (2013).

    Article  Google Scholar 

  11. Y. Fu, L. Buryanovskyy, and Z. Zhang, J. Biol. Chem. 283 (35), 23829 (2008).

    Article  Google Scholar 

  12. A. F. Rump, J. Schierholz, R. Rosen, et al., Arzneimittelforschung 51 (12), 964 (2001).

    Google Scholar 

  13. V. M. Costa, R. Silva, L. M. Ferreira, et al., Chem. Res. Toxicol. 20 (8), 1183 (2007).

    Article  Google Scholar 

  14. J. Smythies, A. De Iuliis, L. Zanatta and L. Galzigna, Neurotox. Res. 4 (1), 77 (2002).

    Article  Google Scholar 

  15. K. Jomova and M. Valko, Toxicology 283 (2–3), 65 (2011).

    Article  Google Scholar 

  16. T. V. Sirota, N. V. Lange, N. K. Kosjakova, et al., Curr. Topics Biophys. 24, 185 (2000).

    Google Scholar 

  17. T. V. Sirota, in Mitochondria in Pathology: Proc. AllRussia Working Conf. (Pushchino, 2001), pp. 113–115.

    Google Scholar 

  18. T. V. Sirota, N. V. Khunderyakova, and M. N. Kondrashova, in Metal Ions in Biology and Medicine: Proc. 7th Int. Symp. (St. Peterburg, 2002), pp. 495–497.

    Google Scholar 

  19. Bioorganometallics: Biomolecules, Labeling, Medicine, Ed. by G. Jaouen (Wiley, New York, 2005; Binom, Moscow, 2010).

  20. A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, Biomed. Khim. 54 (6), 687 (2008).

    Google Scholar 

  21. A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, Chem. Phys. Chem. 8 (12), 1863 (2007).

    Google Scholar 

  22. T. V. Sirota, A. I. Miroshnikov, and K. N. Novikov, Biophysics (Moscow) 55 (6), 911 (2010).

    Article  Google Scholar 

  23. H. P. Misra and I. Fridovich, J. Biol. Chem. 247, 3170 (1972).

    Google Scholar 

  24. A. V. Lebedev, M. V. Ivanova, and E. K. Ruuge, Biophysics (Moscow) 56 (2), 188 (2011).

    Article  Google Scholar 

  25. A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, Biophysics (Moscow) 58 (1), 37 (2013).

    Article  Google Scholar 

  26. W. L. Gabler, Res. Commun. Chem. Pathol. Pharmacol. 70 (2), 213 (1990).

    MathSciNet  Google Scholar 

  27. H. Suzuki, M. J. Pabst and R. B. Johnston, Jr., J. Biol. Chem. 260 (6), 3635 (1985).

    Google Scholar 

  28. T. Yamashita and A. Someya, Biochim. Biophys. Acta 927 (3), 359 (1987).

    Article  Google Scholar 

  29. L. Simchowitz, M. A. Foy and E. J. Cragoe, Jr., J. Biol. Chem. 265 (23), 13449 (1990).

    Google Scholar 

  30. S. Baez and J. Segura-Aguilar, J. Biochem. Mol. Med. 56 (1), 37 (1995).

    Article  Google Scholar 

  31. J. Smythies, Neurotoxicol. Res. 4 (2), 147 (2002).

    Article  Google Scholar 

  32. V. G. Kolpakov, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova 74 (8), 1254 (1974).

    Google Scholar 

  33. G. S. Behonick, M. J. Novak, E. W. Nealley, and S. L. Baskin, J. Appl. Toxicol. 21 (1) 15 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sirota.

Additional information

Original Russian Text © T.V. Sirota, 2016, published in Biofizika, 2016, Vol. 61, No. 1, pp. 22–27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirota, T.V. The effect of fixed valence metal ions on the free radical process of epinephrine autoxidation. BIOPHYSICS 61, 17–21 (2016). https://doi.org/10.1134/S000635091601022X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091601022X

Keywords

Navigation