Biophysics

, Volume 60, Issue 6, pp 913–916 | Cite as

The effect of a low-frequency electromagnetic field on DNA molecules in aqueous solutions

  • E. E. Tekutskaya
  • M. G. Barishev
  • G. P. Ilchenko
Molecular Biophysics
  • 26 Downloads

Abstract

A chemiluminescence study showed that hepatitis B virus (HBV) and hepatitis C virus (HCV) DNA amplicons are capable of induced radiation when exposed to electromagnetic fields (EMFs) that range from 7.5 to 30 Hz in frequency and from 24 to 40 A/m in field strength. An EMF with a frequency of 9 Hz was shown to exert the greatest effect on aqueous solutions of the hepatitis virus DNA amplicons. The hydration shell of the DNA amplicons was observed to change. The change in the DNA hydration shell on exposure to a low-frequency EMF was presumed to restore hydrogen bonds, to induce crosslinks, and to facilitate DNA repair.

Keywords

DNA amplicons low-frequency electromagnetic field aqueous solutions chemiluminescence 

Abbreviations

EMF

electromagnetic field

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Temuryants, B. M. Vladimirskii, and O. G. Tishkin, Ultralow-Frequency Electromagnetic Signals in the Biological World (Naukova Dumka, Kiev, 1992) [in Russian].Google Scholar
  2. 2.
    V. N. Binghi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  3. 3.
    E. E. Tekutskaya, Yu. A. Vasil’ev, and A. A. Khramtsova, Russ. Immunol. Zh. 8 (3), 466 (2014).Google Scholar
  4. 4.
    E. E. Tekutskaya and M. G. Barishev, Odessa Astronom. Publ. 26 (2), 303 (2013).ADSGoogle Scholar
  5. 5.
    V. V. Novikov, V. V. Kuvichkin, and E. E. Fesenko, Biophysics (Moscow) 44 (2), 226 (1999).Google Scholar
  6. 6.
    V. V. Novikov, Biophysics (Moscow) 43 (4), 554 (1998).Google Scholar
  7. 7.
    V. D. Lakhno and V. B. Sultanov, Biophysics (Moscow) 48 (5), 741 (2003).Google Scholar
  8. 8.
    L. Montagnier, J. Phys.: Conf. Series 306, 53 (2011).Google Scholar
  9. 9.
    L. Montagnier, Interdiscip. Sci. Comput. Life 1, 81 (2009).CrossRefGoogle Scholar
  10. 10.
    A. F. Bunkin, S. M. Pershin, R. S. Khusainova, and S. A. Potekhin, Biophysics (Moscow) 54 (3), 275 (2009).CrossRefGoogle Scholar
  11. 11.
    N. V. Pen’kov, N. E. Shvirst, V. A. Yashin, and E. E. Fesenko, Biophysics (Moscow) 58 (6), 731 (2013).CrossRefGoogle Scholar
  12. 12.
    V. O. Ponomarev, V. V. Novikov, A. V. Karnaukhov, and O. A. Ponomarev, Biofizika 53 (2), 197 (2008).Google Scholar
  13. 13.
    V. V. Novikov, V. O. Ponomarev, G. V. Novikov, et al., Biophysics (Moscow) 55 (4), 565 (2010).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Vladimirov, Vestn. Ross. Akad. Med. Nauk No. 7, 43 (1998).Google Scholar
  15. 15.
    J. L. Phillips, N. P. Singh, and H. Lay, Pathophysiology 16, 79 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • E. E. Tekutskaya
    • 1
  • M. G. Barishev
    • 1
  • G. P. Ilchenko
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations