Biophysics

, Volume 60, Issue 5, pp 722–726 | Cite as

Technological prospects of developing DNA-modified biosensors based on carbon nanotubes

  • I. A. Komarov
  • I. I. Bobrinetskiy
  • A. V. Golovin
  • A. O. Zalevsky
  • R. D. Aydarkhanov
Molecular Biophysics

Abstract

In this study, we investigated the response of DNA-modified carbon nanotubes in the presence of thrombin and albumin. Interactions between DNA aptamers and carbon nanotubes were analyzed by Raman spectroscopy and by measuring the resistance of the construct after each step of biosensor assembly. It was shown that aptamer binding to carbon nanotubes decreased the G-band intensity and lowered the resistance of the sensor structure. The responses of the sensor exposed to thrombin and albumin differed substantially from each other, which provides a basis for the development of a highly selective biosensor. These results can be used in the development of a new generation of personal health monitoring systems.

Keywords

DNA-aptamer biosensor single-walled carbon nanotubes selectivity Raman spectroscopy 

Abbreviations

SWNT

single-walled carbon nanotube

15-TBA

5'-aminomodified thrombin aptamer

CDI

1,1'-car-bonyldiimidazole

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kong, N. R. Franklin, Ch. Zhou, et al., Science 287, 622 (2000).CrossRefADSGoogle Scholar
  2. 2.
    K. Tsukagoshi, I. Yagi, and Y. Aoygi, Appl. Phys. Lett. 85 (6), 1021 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. B. Artyukhin, M. Stadermann, R. W. Friddle, et al., Nano Lett. 6. (9), 2080 (2006).CrossRefADSGoogle Scholar
  4. 4.
    I. Heller, A. M. Janssens, J. Mannik, et al., Nano Lett. 8 (2), 591 (2008).CrossRefADSGoogle Scholar
  5. 5.
    K. F. Ahmadishina, I. I. Bobrinetskiy, I. A. Komarov, et al., Nanotechnol. Russia 8 (11–12), 721 (2013).CrossRefGoogle Scholar
  6. 6.
    H.-M. So, K. Won, Y. H. Kim, et al., J. Am. Chem. Soc. 127 (34), 11906 (2005).CrossRefGoogle Scholar
  7. 7.
    C. Thomsen and S. Reich, Topics Appl. Phys. 108, 115 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Husanu, M. Baibarac, and I. Baltog, Roman. Rep. Phys. 60 (3), 691 (2008).Google Scholar
  9. 9.
    A. Soto and G. A. Voyiatzis, Macromolecules 35, 2095 (2002).CrossRefADSGoogle Scholar
  10. 10.
    R. V. Reshetnikov, A. M. Kopylov, and A. V. Golovin, Acta Naturae 2 (4), 80 (2010).Google Scholar
  11. 11.
    T. An, K. S. Kim, S. K. Hahn, and G. Lim, Lab. Chip. 10, 2052 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • I. A. Komarov
    • 1
  • I. I. Bobrinetskiy
    • 1
  • A. V. Golovin
    • 2
  • A. O. Zalevsky
    • 2
  • R. D. Aydarkhanov
    • 2
  1. 1.National Research University of Electronic TechnologyMoscowRussia
  2. 2.Department of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia

Personalised recommendations