Skip to main content
Log in

Radioprotective substances: History, trends and prospects

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The search for efficient radioprotective substances that alleviate various effects of ionizing radiation has been going on for more than 6 decades. The chronology of the major discoveries in this field and the changes in opinions, trends, and paradigms are considered in the present review. Various classes of chemical compounds that can be administered either before or after irradiation to protect biological objects from short- and long-term effects of ionizing radiation are considered. Dose-modifying factors, recommended time of administration, tissue specificity, and the toxicity of different classes of radioprotective substances are considered and the mechanisms that underlie the actions, as well as the practical applications, of these substances, are described. A section of this review is dedicated to future prospects and the directions of research on radioprotective substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMF:

dose-modifying factor

RSH:

sulfhydryl radioprotectors

SOD:

superoxide dismutase

ACE:

angiotensin-1 converting enzyme

References

  1. M. V. Vasin, Anti-Radiation Drugs (Ross. Akad. Poslediplomn. Obraz., 2010) [in Russian].

    Google Scholar 

  2. J. F. Weiss and M. R. Landauer, Int. J. Radiat. Biol. 85, 539 (2009).

    Article  Google Scholar 

  3. H. B. Stone, J. E. Moulder, C. N. Coleman, et al., Radiat. Res. 162, 711 (2004).

    Article  Google Scholar 

  4. M. V. Vasin, Radiats. Biol. Radioecol. 53, 459 (2013).

    Google Scholar 

  5. L. N. Shishkina, Radiats. Biol. Radioecol. 53, 536 (2013).

    Google Scholar 

  6. I. B. Ushakov and M. V. Vasin, Aviakosm. Ekol. Med. 45, 3 (2011).

    Google Scholar 

  7. H. M. Patt, E. B. Tyree, R. L. Straube, et al., Science 110, 213 (1949).

    Article  ADS  Google Scholar 

  8. J. M. Yuhas and J. B. Storer, Int. J. Radiat. Biol. Rel. Stud. Phys. Chem. Med. 15, 233 (1969).

    Article  Google Scholar 

  9. S. P. Tannehill and M. P. Mehta, Semin. Oncol. 23, 69 (1996).

    Google Scholar 

  10. D. Q. Brown, W. J. Graham, L. J. MacKenzie, et al., Pharmacol. Ther. 39, 157 (1988).

    Article  Google Scholar 

  11. D. Doherty and W. Burnett, Proc. Soc. Exptl. Biol. Med. 89, 312 (1955).

    Article  Google Scholar 

  12. M. R. Landauer, H. D. Davis, J. A. Dominitz, et al. Pharmacol. Therap. 39, 97 (1988).

    Article  Google Scholar 

  13. Yu. N. Korystov and F. B. Vexler, Radiat. Res. 114, 550 (1988).

    Article  Google Scholar 

  14. M. V. Vasin, Products for Prevention and Treatment of Radiation Injuries (VTsMK Zashchita, Moscow, 2006) [in Russian].

    Google Scholar 

  15. C. K. Nair, D. K. Parida, and T. Nomura, J. Radiat. Res. 42, 21 (2001).

    Article  Google Scholar 

  16. H. Shen, Z. J. Chen, J. T. Zilfou, et al., J. Pharmacol. Exp. Therap. 297, 1067 (2001).

    Google Scholar 

  17. S. V. Gudkov, V. I. Bruskov, A. V. Kulikov, et al., Al’manakh Klin. Med. 31, 61 (2014).

    Google Scholar 

  18. J. T. Weil, J. Van der Veen, and H. S. Olcott, Nature 219, 168 (1968).

    Article  ADS  Google Scholar 

  19. S. Tabaczar, M. Talar, and K. Gwoldzilski, Postepy Hig. Med. Dosw. 65, 46 (2011).

    Article  Google Scholar 

  20. B. Halliwell, Free Radic. Res. 31, 261 (1999).

    Article  Google Scholar 

  21. A. Petkau and W. S. Chelack, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 26, 421 (1974).

    Article  Google Scholar 

  22. M. Carpenter, S. H. Agarwal, S. H. Nie, et al., Int. J. Radiat. Oncol. Biol. Phys. 60, 172 (2004).

    Article  Google Scholar 

  23. J. F. Weiss, Environ. Health Perspect. 105, 1473 (1997).

    Article  Google Scholar 

  24. U. K. Alekperov and D. D. Akhundova, Genetika 10, 12 (1975).

    Google Scholar 

  25. M. I. Loseva, L. A. Purtova, and R. F. Gavalova, Kardiologiya 42, 48 (2002).

    Google Scholar 

  26. E. P. Cohen and E. C. Robbins, Semin. Nephrol. 23, 486 (2003).

    Article  Google Scholar 

  27. A. Molteni, J. E. Moulder, E. F. Cohen, et al., Int. J. Radiat. Biol. 76, 523 (2000).

    Article  Google Scholar 

  28. W. F. Ward, A. S. Hoellwarth, and R. D. Tuttle, Radiology 146, 533 (1983).

    Article  Google Scholar 

  29. J. E. Moulder and B. L. Fish, Radiat. Oncol. Invest. 5, 50 (1997).

    Article  Google Scholar 

  30. B. Wilson and T. Matsuzawa, Radiat. Res. 19, 231 (1963).

    Google Scholar 

  31. L. A. Il’in, I. E. Andrianova, V. A. Glushkov, et al., Radiats. Biol. Radioecol. 44, 547 (2004).

    Google Scholar 

  32. R. Neta, S. D. Douches, and J. J. Oppenheim, J. Immunol. 136, 2483 (1986).

    Google Scholar 

  33. F. Herodin, L. Roy, N. Grenier, et al., Exp. Hematol. 35, 1172 (2007).

    Article  Google Scholar 

  34. P. Winczura and J. Jassem, Cancer Treatment Rev. 36, 268 (2010).

    Article  Google Scholar 

  35. P. Stiff, W. Bensinger, T. Emmanouilides, and T. Gentile, Blood 102, 676 (2003).

    Google Scholar 

  36. A. A. Ivanov, V. P. Kuznetsov, A. M. Ulanova, et al., Radiats. Biol. Radioecol. 44, 403 (2004).

    Google Scholar 

  37. K. N. Prasad, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 22, 187 (1972).

    Article  Google Scholar 

  38. P. Needleman, J. Turk, A. R. Morrison, et al., Ann. Rev. Biochem. 55, 69 (1986).

    Article  Google Scholar 

  39. W. R. Hanson, W. Zhen, L. Geng, et al., Radiat. Res. 142, 281 (1995).

    Article  Google Scholar 

  40. M. Margoshes and B. L. Vallee, J. Am. Chem. Soc. 79, 4813 (1957).

    Article  Google Scholar 

  41. J. Kagi and A. Schaffer, Biochemistry 27, 8509 (1988).

    Article  Google Scholar 

  42. A. N. Koterov and I. V. Filippovich, Radiats. Biol. Radioecol. 35, 162 (1995).

    Google Scholar 

  43. R. Murata, Y. Nishimura, M. Hiraoka, et al., Radiat. Res. 143, 316 (1995).

    Article  Google Scholar 

  44. P. J. Smith and C. O. Anderson, Int. J. Radiat. Biol. 46, 331 (1984).

    Article  Google Scholar 

  45. R. F. Martin and N. Holmes, Nature 302, 452 (1983).

    Article  ADS  Google Scholar 

  46. P. N. Lobachevsky, R. S. Vasireddy, S. Broadhurst, et al., Int. J. Radiat. Biol. 87, 274 (2011).

    Article  Google Scholar 

  47. K. Mishra, R. Bhardwaj, and N. K. Chaudhury, Radiat. Res. 172, 698 (2009).

    Article  Google Scholar 

  48. S. Chui and N. L. Oleinick, Radiat. Res. 149, 543 (1998).

    Article  Google Scholar 

  49. R. D. Snyder and K. K. Schroeder, Radiat Res. 137, 67 (1994).

    Article  Google Scholar 

  50. L. H. Gray, A. D. Conger, M. Ebert, et al., Br. J. Radiol. 26, 638 (1953).

    Article  Google Scholar 

  51. M. S. Joyner and A. D. van der Kogel, Basic Clinical Radiobiology, 4th ed. (Hodder Education, London. 2009; Binom, Moscow, 2013).

    Google Scholar 

  52. L. Kh. Eidus and Yu. N. Korystov, Oxygen in Radiobiology (Energoatomizdat, Moscow, 1984) [in Russia].

    Google Scholar 

  53. S. Ya. Proskuryakov, N. G. Kucherenko, M. N. Semenenko, et al., Radiats. Biol. Radioecol. 43, 51 (2003).

    Google Scholar 

  54. M. V. Vasin, I. B. Ushakov, V. Yu. Kovtun, et al., Radiats. Biol. Radioecol. 48, 623 (2008).

    Google Scholar 

  55. A. N. Grebenyuk, V. V. Zatsepin, N. V. Aksenova, et al., Radiats. Biol. Radioecol. 50, 423 (2010).

    Google Scholar 

  56. F. Shimazu and A. L. Tappel, Radiat. Res. 23, 210 (1964).

    Article  Google Scholar 

  57. B. Kumar, A. Kunwar, A. Ahmad, et al., Radiat. Environ. Biophys. 48, 379 (2009).

    Article  Google Scholar 

  58. I. S. Drachev, V. I. Legeza, and Yu. S. Turlakov, Radiats. Biol. Radioecol. 53, 475 (2013).

    Google Scholar 

  59. A. Novick and L. Szilard, Nature 170, 926 (1952).

    Article  ADS  Google Scholar 

  60. N. V. Luchnik, Biokhimiya 23, 146 (1958).

    Google Scholar 

  61. J. Maisin, P. Dumont, and A. Dunjio, Nature 186, 91 (1960).

    Article  Google Scholar 

  62. K. S. Chertkov and V. M. Petrov, Aviakosm. Ekol. Med. 27, 27 (1993).

    Google Scholar 

  63. S. V. Gudkov, I. N. Shtarkman, V. S. Smirnova, et al., Radiat. Res. 165, 538 (2006).

    Article  Google Scholar 

  64. S. V. Gudkov, O. Y. Gudkova, A. V. Chernikov, et al., Int. J. Radiat. Biol. 85, 116 (2009).

    Article  Google Scholar 

  65. S. V. Gudkov, I. N. Shtarkman, V. S. Smirnova, A. V. Chernikov, and V. I. Bruskov, Dokl. Biochem Biophys. 407, 47 (2006).

    Article  Google Scholar 

  66. N. R. Asadullina, A. M. Usacheva, and S. V. Gudkov, J. Radiat. Res. 53, 211 (2012).

    Article  Google Scholar 

  67. N. R. Asadullina, A. M. Usacheva, V. S. Smirnova, et al., Nucleosides, Nucleotides, Nucleic Acids 29, 786 (2010).

    Article  Google Scholar 

  68. N. R. Asadullina, S. V. Gudkov, and V. I. Bruskov, Dokl. Biochem. Biophys. 442, 22 (2012).

    Article  Google Scholar 

  69. N. R. Popova, S. V. Gudkov, and V. I. Bruskov, Radiats. Biol. Radioecol. 54, 1 (2014).

    Google Scholar 

  70. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al., Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  71. P. J. Krusic, E. Wasserman, P. Keizer, et al., Science 254, 1183 (1991).

    Article  ADS  Google Scholar 

  72. C. A. Theriot, R. C. Casey, V. C. Moore, et al., Radiat. Environ. Biophys. 49, 437 (2010).

    Article  Google Scholar 

  73. V. Bogdanovic, K. Stankov, I. Icevic, et al., J. Radiat. Res. 49, 321 (2008).

    Article  Google Scholar 

  74. S. Trajkovic, S. Dobric, V. Jacevic, et al., Colloids Surf. B 58, 39 (2007).

    Article  Google Scholar 

  75. G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, et al., Free Radic. Biol. Med. 47, 786 (2009).

    Article  Google Scholar 

  76. A. P. Brown, E. J. Chung, M. E. Urick, et al., Radiat. Oncol. 5, 34 (2010).

    Article  Google Scholar 

  77. S. K. Pirutin, V. B. Turovetskii, A. V. Kedrov, et al., Radiats. Biol. Radioecol. 52, 252 (2012).

    Google Scholar 

  78. S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Ross. Khim. Zh. L, 73 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gudkov.

Additional information

Original Russian Text © S.V. Gudkov, N.R. Popova, V.I. Bruskov, 2015, published in Biofizika, 2015, Vol. 60, No. 4, pp. 801–811.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudkov, S.V., Popova, N.R. & Bruskov, V.I. Radioprotective substances: History, trends and prospects. BIOPHYSICS 60, 659–667 (2015). https://doi.org/10.1134/S0006350915040120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915040120

keywords

Navigation