Skip to main content
Log in

Approximation of time series of Paramecia caudatum dynamics by the Verhulst and Gompertz models: A non-traditional approach

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The Verhulst and Gompertz models were used for approximation of some well-known time series of Paramecia caudatum population dynamics (G.F. Gause, “The Struggle for Existence,” 1934). The parameters were estimated for each of the models in two different ways: with the least-squares method (global fitting) and a non-traditional approach (the method of extreme points). The results were compared with those presented by Gause. Deviations of theoretical (model) trajectories from experimental time series were tested using various non-parametric statistical tests. It was shown that the estimates by the least-squares method lead to results that do not always meet the requirements that are imposed on a “fine” model. However, in some cases a small modification of the least-squares-method estimates is possible that allows satisfactory representations of an experimental data set for approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Gause, The Struggle for Existence (Williams and Wilkins, Baltimore, 1934)

    Book  Google Scholar 

  2. G. F. Gause, Zool. Zh. 12 (3), 170 (1933).

    Google Scholar 

  3. G. F. Gause, Zool. Zh. 13 (1), 18 (1934).

    Google Scholar 

  4. G. F. Gause, Byull. Mosk. O-va. Ispyt. Prir., Ser. Biol. 43 (1), 69 (1934).

    Google Scholar 

  5. G. F. Gause and A. A. Vitt, Izv. Sib. Otd. Akad. Nauk SSSR, 10, 1551 (1934).

    Google Scholar 

  6. P. F. Verhulst, Corresp. Math. Phys. 10, 113 (1838).

    Google Scholar 

  7. V. Volterra, Mathematical Theory of Struggle for Life (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  8. V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie (Gauthiers-Villars, Paris, 1931).

    Google Scholar 

  9. A. I. Lotka, J. Am. Chem. Soc. 42 (8), 1595 (1920).

    Article  Google Scholar 

  10. A. I. Lotka, Elements of Physical Biology (Williams aand Wilkins, Baltimore, 1925).

    MATH  Google Scholar 

  11. B. Gompertz, Phil. Trans. R. Soc. London 115, 513 (1825).

    Article  Google Scholar 

  12. Yu. M. Svirezhev, Nonlinear Waves, Dissipative Structures, and Catastrophes in Ecology (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  13. M. L. Rosenzweig, Am. Nat. 103, 81 (1969).

    Article  Google Scholar 

  14. M. L. Rosenzweig and R. H. MacArthur, Am. Nat. 97, 209 (1963).

    Article  Google Scholar 

  15. L. V. Nedorezov and Yu. V. Utyupin, Continuous–Discrete Models of Population Dynamics, Anal. Obzor Ser. Ekologiya (GPNTB SO RAN, Novosibirsk), Vol. 95.

  16. L. V. Nedorezov, Zh. Obshch. Biol. 73 (2), 114 (2012).

    Google Scholar 

  17. L. V. Nedorezov, Population Dynamics: Analysis, Modelling, Forecast 1 (1), 47 (2012).

    Google Scholar 

  18. L. V. Nedorezov, Chaos and Order in Population Dynamics: Analysis, Modelling, Forecast (Lambert Academic Publishing, Saarbrücken, 2012).

    Google Scholar 

  19. V. N. Tutubalin, Yu. M. Barabasheva, G. N. Devyatkova, and E. G. Uger, Analysis of G. F. Gause’s Studies on the Population Dynamics of Species in Biological Communities (2010). http://ecology.genebee.msu.ru/ 3_SOTR/CV_Barabashe va_publ/Analiz-rabotGause.pdf.

    Google Scholar 

  20. Y. Bard, Nonlinear Parameter Estimation, 4th ed. (Academic, New York, 1973; Statistika, Moscow, 1979).

    MATH  Google Scholar 

  21. N. R. Draper and H. Smith, Applied Regression Analysis, 2nd ed. (Wiley, New York, 1981; Finansy i Statistika, Moscow, 1986), Vol. 1.

    MATH  Google Scholar 

  22. N. R. Draper and H. Smith, Applied Regression Analysis, 2nd ed. (Wiley, New York, 1981; Finansy i Statistika, Moscow, 1987), Vol. 2.

    Google Scholar 

  23. A. D. Bazykin, Mathematical Biophysics of Interacting Populations (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  24. Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  25. J. Maynard Smith, Models in Ecology (Cambridge Univ. Press, New York, 1974; Mir, Moscow, 1976).

    Google Scholar 

  26. L. N. Bol’shev and N. V. Smirnov, Mathematical Statistical Tables (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  27. J. Likeš and J. Laga, Basic Statistical Tables (SNTL, Prague, 1978; Finansy i Statistika, Moscow 1985).

    Google Scholar 

  28. M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods (New York, Wiley, 1973; Finansy i Statistika, Moscow, 1983).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Nedorezov.

Additional information

Original Russian Text © L.V. Nedorezov, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 564–573.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedorezov, L.V. Approximation of time series of Paramecia caudatum dynamics by the Verhulst and Gompertz models: A non-traditional approach. BIOPHYSICS 60, 457–465 (2015). https://doi.org/10.1134/S0006350915030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915030112

Keywords

Navigation